Skip to main content

Kinetic Monte Carlo Simulation of Non-Equilibrium Lattice-Gas Models: Basic and Refined Algorithms Applied to Surface Adsorption Processes

  • Chapter
Handbook of Materials Modeling

Abstract

For many growth, transport, or reaction processes occurring on the surfaces or in the bulk of crystalline solids, atoms reside primarily at a discrete periodic array or lattice of sites, actually vibrating about such sites. These atoms make occasional “sudden” transitions between nearby sites due to diffusive hopping, or may populate or depopulate sites due to adsorption and desorption, possibly involving reaction. Most of these microscopic processes are thermally activated, the rates having an Arrhenius form reliably determined by transition state theory [1]. In general, these rates will depend on the local environment (i.e., the occupancy of nearby sites) thus introducing cooperativity into the process, and they may vary over many orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.F. Voter, F. Montalenti, and T.C. Germann, “Extending the time scale in atomistic simulation of materials”, Ann. Rev. Mater. Sci., 32, 321, 2002.

    Article  Google Scholar 

  2. T. Liggett, Interacting Particle Systems, Springer-Verlag, Berlin, 1985.

    MATH  Google Scholar 

  3. N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1981.

    MATH  Google Scholar 

  4. D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge UP, Cambridge, 2000.

    MATH  Google Scholar 

  5. J.W. Evans, “Random and cooperative sequential adsorption”, Rev. Mod. Phys., 65, 1281, 1993.

    Article  ADS  Google Scholar 

  6. A.B. Bortz, M.H. Kalos, and J.L. Lebowitz, “A new algorithm for Monte Carlo simulation of Ising spin systems”, J. Comp. Phys., 17, 10, 1975.

    Article  ADS  Google Scholar 

  7. M.C. Bartelt and J.W. Evans, “Nucleation and growth of square islands during deposition: sizes, coalescence, separations, and correlations”, Surf. Sci., 298, 421, 1993.

    Article  ADS  Google Scholar 

  8. Z. Zhang and M.G. Lagally, (eds.), Morphological Organization in Epitaxial Growth and Removal, World Scientific, Singapore, 1998.

    Google Scholar 

  9. K.J. Caspersen, A.R. Layson, C.R. Stoldt, V. Fournee, P.A. Thiel, and J.W. Evans, “Development and ordering of mounds in metal(100) homoepitaxy”, Phys. Rev. B, 65, 193407, 2002.

    Article  ADS  Google Scholar 

  10. A.F. Voter, “Classically exact overlayer dynamics: diffusion of rhodium clusters on Rh(100)”, Phys. Rev. B, 34, 6819, 1986.

    Article  ADS  Google Scholar 

  11. H. Mehl, O. Biham, I. Furman, and M. Karimi, “Models for adatom diffusion on fcc(001) metal surfaces”, Phys. Rev. B, 60, 2106, 1999.

    Article  ADS  Google Scholar 

  12. G. Henkelman and H. Jonsson, “Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table”, J. Chem. Phys., 115, 9657, 2001.

    Article  ADS  Google Scholar 

  13. O. Trushin, A. Kara, and T.S. Rahman, “A self-teaching KMC method”, to be published, 2005.

    Google Scholar 

  14. M.C. Bartelt, A.K. Schmid, J.W. Evans, and R.Q. Hwang, “Island size and environment dependence of adatom capture: Cu/Co islands on Ru(0001)”, Phys. Rev. Lett., 81, 1901, 1998.

    Article  ADS  Google Scholar 

  15. C. Ratsch, M.F. Gyure, R.E. Caflisch, F. Gibou, M. Petersen, M. Kang, J. Garcia, and D.D. Vvedensky, “Level set method for island dynamics in epitaxial growth”, Phys. Rev. B, 65, 195403, 2002.

    Article  ADS  Google Scholar 

  16. G. Russo, L.M. Sander, and P. Smereka, “Quasicontinuum Monte Carlo: a method for surface growth simulations”, Phys. Rev. B, 69, 121406, 2004.

    Article  ADS  Google Scholar 

  17. M. Li, M.C. Bartelt, and J.W. Evans, “Geometry-based simulation of submonolayer film growth”, Phys. Rev. B, 68, 121401, 2003.

    Article  ADS  Google Scholar 

  18. T.R. Mattsson, G. Mills, and H. Metiu, “A new method for simulating late stages of coarsening in island growth: the role of island diffusion and evaporation”, J. Chem. Phys., 110, 12151, 1999.

    Article  ADS  Google Scholar 

  19. R.M. Ziff, E. Gulari, and Y. Barshad, “Kinetic phase transitions in an irreversible surface reaction model”, Phys. Rev. Lett., 56, 2553, 1986.

    Article  ADS  Google Scholar 

  20. J.W. Evans, M. Tammaro, and D.-J. Liu, “From atomistic lattice-gas models for surface reactions to hydrodynamic reaction-diffusion equations”, Chaos, 12, 131, 2002.

    Article  ADS  Google Scholar 

  21. E. Loscar and E.Z. Albano, “Critical behavior of irreversible reaction systems”, Rep. Prog. Phys., 66, 1343, 2003.

    Article  ADS  Google Scholar 

  22. R.M. Ziff and B.J. Brosilow, “Investigation of the first-order transition in the A-B2 reaction model using a constant-coverage kinetic ensemble”, Phys. Rev. A, 46, 4630, 1992.

    Article  ADS  Google Scholar 

  23. M. Silverberg and A. Ben Shaul, “Adsorbate islanding in surface reactions: a combined Monte Carlolattice gas approach”, J. Chem. Phys., 87, 3178, 1989.

    Article  ADS  Google Scholar 

  24. M. Tammaro, M. Sabella, and J.W. Evans, “Hybrid treatment of spatiotemporal behavior in surface reactions with coexisting immobile and highly mobile reactants”, J. Chem. Phys., 103, 10277, 1995.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Evans, J.W. (2005). Kinetic Monte Carlo Simulation of Non-Equilibrium Lattice-Gas Models: Basic and Refined Algorithms Applied to Surface Adsorption Processes. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_88

Download citation

Publish with us

Policies and ethics