Skip to main content

Elastic Stability Criteria and Structural Bifurcations in Crystals Under Load

  • Chapter
Handbook of Materials Modeling

Abstract

What happens when a crystalline material is deformed elastically to the point where it loses structural stability? Under what circumstances will it lose stability? Why are these questions important? The stress required to cause elastic instability is often considered to be the ultimate “theoretical strength” of a crystalline material, which is an inherently intriguing concept, in and of itself. The “theoretical strength” plays important roles in understanding and/or describing practical phenomena, e.g., it forms a basis for calculating the efficiency of grinding processes and it affects the stress distribution near the tip of a crack and thus influences whether a material will exhibit brittle or ductile behavior. From another viewpoint, structural phase change rather than loss of strength is the presumed outcome of elastic instability. New crystalline or amorphous structures that form under mechanical stress may remain elastically stable after the stress is released, and so may continue to exist indefinitely, even if not in the thermodynamic equilibrium state at zero stress. (An example of an elastically stable structure that is also not in the thermodynamic equilibrium state is the extremely hard, tetragonal crystalline form of ironcarbon alloy referred to as martensitic steel; such structures are sometimes called metastable.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Hill, Math. Proc. Camb. Phil. Soc., 77, 225, 1975.

    Article  MATH  Google Scholar 

  2. F. Milstein and S. Chantasiriwan, Phys. Rev. B, 58, 6006, 1998.

    Article  ADS  Google Scholar 

  3. M. Parrinello and A. Rahman, J. Appl. Phys., 52, 7182, 1981.

    Article  ADS  Google Scholar 

  4. M. Born, Proc. Camb. Phil. Soc., 36, 160, 1940.

    Article  MathSciNet  Google Scholar 

  5. M. Born and R. Furth, Proc. Camb. Phil. Soc., 36, 454, 1940.

    Article  MathSciNet  Google Scholar 

  6. R. Hill and F. Milstein, Phys. Rev. B, 15, 3087, 1977.

    Article  ADS  Google Scholar 

  7. F. Milstein and R. Hill, J. Mech. Phys. Solids, 27, 255, 1979.

    Article  ADS  Google Scholar 

  8. F. Milstein and R. Hill, Phys. Rev. Lett., 43, 1141, 1979.

    Google Scholar 

  9. N.H. Macmillan and A. Kelly, Proc. R. Soc. London, A, 330, 291, see also p. 309, 1972.

    Google Scholar 

  10. F. Milstein, Phys. Rev. B, 3, 1130, 1971.

    Article  ADS  Google Scholar 

  11. F. Milstein, R. Hill, and K. Huang, Phys. Rev. B, 21, 4282, 1980.

    Article  ADS  Google Scholar 

  12. R. Hill, Adv. Appl. Mech., 18, 1, 1978.

    Article  MATH  Google Scholar 

  13. J. Wang, S. Yip, S.R. Phillpot, and D. Wolf, Phys. Rev. Lett., 71, 4182, 1993.

    Article  ADS  Google Scholar 

  14. J.W. Morris, Jr., C.R. Krenn, D. Roundy, and M.L. Cohen, “Elastic stability and the limit of strength,” In:Turchi, P. E. and Gonis, A. (eds.), Phase Transformations and Evolution in Materials, Warrandale, PA, TMS, pp. 187–207, 2000.

    Google Scholar 

  15. F. Milstein and R. Hill, J. Mech. Phys. Solids, 25, 457, 1977.

    Article  ADS  Google Scholar 

  16. F. Milstein and R. Hill, J. Mech. Phys. Solids, 26, 213, 1978.

    Article  ADS  Google Scholar 

  17. F. Milstein, “Crystal elasticity,” In: H.G. Hopkins and M.J. Sewell (eds.), Mechanics of Solids, Pergamon Press, Oxford and New York, pp. 417–451, 1982.

    Google Scholar 

  18. J. Zhao, D. Maroudas, and F. Milstein, Phys. Rev. B, 62, 13799, 2000.

    Article  ADS  Google Scholar 

  19. D.J. Rasky and F. Milstein, Phys. Rev. B, 33, 2765, 1986.

    Article  ADS  Google Scholar 

  20. F. Milstein and D.J. Rasky, Phys. Rev. B, 54, 7016, 1996.

    Article  ADS  Google Scholar 

  21. D.A. Young, Phase Diagrams of the Elements, University of California Press, Berkeley, 1991.

    Google Scholar 

  22. S. Chantasiriwan and F. Milstein, Phys. Rev. B, 58, 5996, 1998.

    Article  ADS  Google Scholar 

  23. S. Chantasiriwan and F. Milstein, Phys. Rev. B, 48,14 080, 1996.

    Google Scholar 

  24. F. Milstein, H.E. Fang, X.Y. Gong, and D.J. Rasky, Solid State Commun., 99, 807, 1996.

    Article  ADS  Google Scholar 

  25. F. Milstein and D.J. Rasky, Phil. Mag. A, 45, 49, 1982.

    Article  ADS  Google Scholar 

  26. F. Milstein and J. Marschall, Acta Metall. Mater., 40, 1229, 1992.

    Article  Google Scholar 

  27. F. Milstein, Solid State Commun., 34, 653, 1980.

    Article  ADS  Google Scholar 

  28. F. Milstein, H.E. Fang, and J. Marschall, Phil. Mag. A, 70, 621, 1994.

    Article  ADS  Google Scholar 

  29. F. Milstein, Y.C. Tang, K. Huang, and R. Hsu, Phil. Mag. A, 48, 871, 1983.

    Article  ADS  Google Scholar 

  30. F. Milstein and K. Huang, Phys. Rev. B, 18, 2529, 1978.

    Article  ADS  Google Scholar 

  31. F. Milstein and B. Farber, Phys. Rev. Lett., 44, 277, 1980.

    Article  ADS  Google Scholar 

  32. F. Milstein, J. Marschall, and H.E. Fang, Phys. Rev. Lett., 74, 2977, 1995.

    Article  ADS  Google Scholar 

  33. R. Hill, Math. Proc. Camb. Phil. Soc., 92, 167, 1982.

    Article  MATH  Google Scholar 

  34. J. Zhao, S. Chantasiriwan, D. Maroudas, and F. Milstein, “Atomistic simulations of the mechanical response and modes of failure in metals at finite strain,” In: Proceed-ings of the Tenth International Conference on Fracture (Honolulu, Hawaii), Elsevier, Amsterdam, contribution IFC10 0575OR, 2001.

    Google Scholar 

  35. J.R. Ray, Comput. Phys. Rep., 8, 109, 1988.

    Article  ADS  Google Scholar 

  36. W.G. Burgers, Physica, (Amsterdam), 1, 561, 1935.

    Article  ADS  Google Scholar 

  37. K. Huang, F. Milstein, and J.A. Baldwin, Jr., Phys. Rev. B, 10, 3635, 1974.

    Article  ADS  Google Scholar 

  38. F. Milstein and J. Marschall, Phil. Mag. A, 58, 365, 1988.

    Article  ADS  Google Scholar 

  39. F. Milstein, J. Zhao, and D. Maroudas, Phys. Rev. B, 70, 184102, 2004.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Milstein, F. (2005). Elastic Stability Criteria and Structural Bifurcations in Crystals Under Load. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_63

Download citation

Publish with us

Policies and ethics