Skip to main content

Interatomic Potentials for Metals

  • Chapter
Handbook of Materials Modeling

Abstract

Many processes in materials, such as plastic deformation, fracture, diffusion and phase transformations, involve large ensembles of atoms and/or require statistical averaging over many atomic events. Computer modeling of such processes is made possible by the use of semi-empirical interatomic potentials allowing fast calculations of the total energy and classical interatomic forces. Due to their computational efficiency, interatomic potentials give access to systems containing millions of atoms and enable molecular dynamics simulations for tens or even hundreds of nanoseconds. State-ofthe-art potentials capture the most essential features of interatomic bonding, reaching the golden compromise between computational speeds and accuracy of modeling. This article reviews interatomic potentials for metals and metallic alloys. The basic concepts used in this area are introduced, the methodology commonly applied to generate atomistic potentials is outlined, and capabilities as well as limitations of atomistic potentials are discussed. Expressions for basic physical properties within the embedded-atom formalism are provided in a form convenient for computer coding. Recent trends in this field and possible future developments are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn., Academic, San Diego, 2002.

    Google Scholar 

  2. D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  3. M.S. Daw and M.I. Baskes, “Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals,” Phys. Rev. B, 29, 6443–6453, 1984.

    Article  ADS  Google Scholar 

  4. M.W. Finnis and J.E. Sinclair, “A simple empirical N-body potential for transition metals,” Philos. Mag. A, 50, 45–55, 1984.

    Article  ADS  Google Scholar 

  5. J.K. Nørskov, “Covalent effects in the effective-medium theory of chemical binding: Hydrogen heats of solution in the 3d metals,” Phys. Rev. B, 26, 2875–2885, 1982.

    Article  ADS  Google Scholar 

  6. D.G. Pettifor, Bonding and Structure of Molecules and Solids, Clarendon Press, Oxford, 1995.

    Google Scholar 

  7. M.S. Daw, “Embedded-atom method: many-body description of metallic cohesion,” In: V. Vitek and D.J. Srolovitz (eds.), Atomistic Simulation of Materials: Beyond Pair Potentials, Plenum Press, New York, pp. 181–191, 1989.

    Google Scholar 

  8. M.S. Daw and R.L. Hatcher, “Application of the embedded atom method to phonons in transition metals,” Solid State Comm., 56, 697–699, 1985.

    Article  ADS  Google Scholar 

  9. A. Van deWalle and G. Ceder, “The effect of lattice vibrations on substitutional alloy thermodynamics,” Rev. Mod. Phys., 74, 11–45, 2002.

    Article  ADS  Google Scholar 

  10. J.M. Rickman and R. LeSar, “Free-energy calculations in materials research,” Annu. Rev. Mater. Res., 32, 195–217, 2002.

    Article  Google Scholar 

  11. S.M. Foiles, “Evaluation of harmonic methods for calculating the free energy of defects in solids,” Phys. Rev. B, 49, 14930–14938, 1994.

    Article  ADS  Google Scholar 

  12. Y. Mishin and C. Herzig, “Diffusion in the Ti-Al system,” Acta Mater, 48, 589–623, 2000.

    Article  Google Scholar 

  13. M. Hagen and M.W. Finnis, “Point defects and chemical potentials in ordered alloys,” Philos. Mag. A, 77, 447–464, 1998.

    Article  ADS  Google Scholar 

  14. D. Wolf, Handbook of Materials Modeling, vol. 1, Chapter 8, Interfaces, 2004.

    Google Scholar 

  15. W. Cai, “Modeling dislocations using a periodic cell,” Article 2.21, this volume.

    Google Scholar 

  16. D. Farkas and R. Selinger, “Atomistics of fracture,” Article 2.33, this volume.

    Google Scholar 

  17. A.F. Voter, “The embedded-atom method,” In: J.H. Westbrook and R.L. Fleischer (eds.), Intermetallic Compounds, vol. 1, John Wiley & Sons, New York, pp. 77–90, 1994.

    Google Scholar 

  18. Y Mishin, “Atomistic modeling of the γ and γ’ phases of the Ni-Al system,” Acta Mater, 52, 1451–1467, 2004.

    Article  Google Scholar 

  19. F. Ercolessi and J.B. Actams, “Interatomic potentials from first-principles calculations: the force-matching method,” Europhys. Lett., 26, 583–588, 1994.

    Article  ADS  Google Scholar 

  20. J.H. Rose, J.R. Smith, F. Guinea, and J. Ferrante, “Universal features of the equation of state of metals,” Phys. Rev. B, 29, 2963–2969, 1984.

    Article  ADS  Google Scholar 

  21. R.R. Zope and Y. Mishin, “Interatomic potentials for atomistic simulations of the Ti-Al system,” Phys. Rev. B, 68, 024102, 2003.

    Article  ADS  Google Scholar 

  22. Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos, “Interatomic potentials for monoatomic metals from experimental data and ab initio calculations,” Phys. Rev. B, 59, 3393–3407, 1999.

    Article  ADS  Google Scholar 

  23. Y Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.R Voter, and J.D. Kress, “Structural stability and lattice defects in copper: ab initio, tight-binding and embeddedatom calculations,” Phys. Rev. B, 63, 224106, 2001.

    Article  ADS  Google Scholar 

  24. Y Mishin, M.J. Mehl, and D.A. Papaconstantopoulos, “Embedded-atom potential for B2-NiAl,” Phys. Rev. B, 65, 224114, 2002.

    Article  ADS  Google Scholar 

  25. M.I. Baskes, “Application of the embedded-atom method to covalent materials: a semi-empirical potential for silicon,” Phys. Rev. Lett., 59, 2666–2669, 1987.

    Article  ADS  Google Scholar 

  26. M.I. Baskes, J.S. Nelson, and A.F Wright, “Semiempirical modified embedded-atom potentials for silicon and germanium,” Phys. Rev. B, 40, 6085–6110, 1989.

    Article  ADS  Google Scholar 

  27. M.I. Baskes, “Modified embedded-atom potentials for cubic metals and impurities,” Phys. Rev. B, 46, 2727–2742, 1992.

    Article  ADS  Google Scholar 

  28. M.I. Baskes, J.E. Angelo, and C.L. Bisson, “Atomistic calculations of composite interfaces,” Modelling Simul. Mater. Sci. Eng., 2, 505–518, 1994.

    Article  ADS  Google Scholar 

  29. M.I. Baskes, “Determination of modified embedded atom method parameters for nickel,” Mater. Chem. Phys., 50, 152–158, 1997.

    Article  ADS  Google Scholar 

  30. M.I. Baskes and R.A. Johnson, “Modified embedded-atom potentials for HCP metals,” Modelling Simul. Mater. Sci. Eng., 2, 147–163, 1994.

    Article  ADS  Google Scholar 

  31. M.I. Baskes, “Atomic potentials for the molybdenum-silicon system,” Mater. Sci. Eng. A, 261, 165–168, 1999.

    Article  Google Scholar 

  32. D. Chen, M. Yan, and Y.F. Liu, “Modified embedded-atom potential for L10-TiAl,” Scripta Mater., 40, 913–920, 1999.

    Article  Google Scholar 

  33. R. Pasianot, D. Farkas, and E.J. Savino, “Empirical many-body interatomic potentials for bcc transition metals,” Phys. Rev. B, 43, 6952–6961, 1991.

    Article  ADS  Google Scholar 

  34. J.R. Fernandez, A.M. Monti, and R.C. Pasianot, “Point defects diffusion in α-Ti,” J. Nucl. Mater., 229, 1–9, 1995.

    Article  Google Scholar 

  35. G. Simonelli, R. Pasianot, and E.J. Savino, “Point-defect computer simulation including angular forces in bcc iron,” Phys. Rev. B, 50, 727–738, 1994.

    Article  ADS  Google Scholar 

  36. G. Simonelli, R. Pasianot, and E.J. Savino, “Phonon-dispersion curves for transition metals within the embedded-atom and embedded-defect methods,” Phys. Rev. B, 55, 5570–5573, 1997.

    Article  ADS  Google Scholar 

  37. G. Simonelli, R. Pasianot, and EJ. Savino, “Self-interstitial configuration in BCC metals. An analysis based on many-body potentials for Fe and Mo,” Phys. Status Solidi (b), 217, 747–758, 2000.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Mishin, Y. (2005). Interatomic Potentials for Metals. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_23

Download citation

Publish with us

Policies and ethics