Skip to main content

Dislocation Cores and Unconventional Properties of Plastic Behavior

  • Chapter
Handbook of Materials Modeling

Abstract

Dislocations are line defects found in all crystalline materials and their motion produces plastic flow. The notion of dislocations has two starting points. First, the dislocation was introduced as an elastic singularity by considering the deformation of a body occupying a multiply connected region of space. Secondly, dislocations were introduced into crystal physics when analyzing the large discrepancy between the theoretical and experimental strength of crystals. These two approaches are intertwined since the crystal dislocations are sources of long-ranged elastic stresses and strains that can be examined in the continuum framework. In fact, the bulk of the dislocation theory employs the continuum elasticity when analyzing a broad variety of dislocation phenomena encountered in plastically deforming crystals [14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Friedel, Dislocations, Pergamon Press: Oxford, 1964.

    MATH  Google Scholar 

  2. F.R.N. Nabarro, Theory of Crystal Dislocations, Clarendon Press: Oxford, 1967.

    Google Scholar 

  3. J.P. Hirth and J. Lothe, Theory of Dislocations, Wiley-Interscience: New York, 1982.

    Google Scholar 

  4. D. Hull, and D.J. Bacon, Introduction to Dislocations, Butterworth-Heinemannn, Oxford, 2001.

    Google Scholar 

  5. A. Cottrell, “Closing Remarks”, Dislocations and Properties of Real Materials, M. Lorretto (ed.), London: The Institute of Metals, 378–381, 1985.

    Google Scholar 

  6. V. Vitek, “Effect of dislocation core structure on the plastic properties of metallic materials”, M. Lorretto (ed.), Dislocations and Properties of Real Materials, London: The Institute of Metals, 30–50, 1985.

    Google Scholar 

  7. M.S. Duesbery, “The dislocation core and plasticity”, In: F.R.N. Nabarro (ed.), Dislocations in Solids, Amsterdam: North Holland, vol. 8, p. 67, 1989.

    Google Scholar 

  8. M.S. Duesbery and G.Y. Richardson, “The dislocation core in crystalline materials”, CRC Critical Reviews in Solid State andMaterials Science, 17, 1, 1991.

    Article  Google Scholar 

  9. V. Vitek, “Structure of dislocation cores in metallic materials and its impact on their plastic behaviour”, Prog. Mater. Sci., 36, 1–27, 1992.

    Article  Google Scholar 

  10. V. Vitek, D.P. Pope, and J.S. Bassani, “Anomalous yield behaviour of compounds with L1(2) structure”, In: F.R.N. Nabarro (ed.), Dislocations in Solids, Amsterdam: North Holland, vol. 10, 135–185, 1995.

    Google Scholar 

  11. V Vitek, “Intrinsic stacking faults in bcc crystals”, Philos. Mag. A, 18, 773, 1968.

    Article  ADS  Google Scholar 

  12. S.L. Frederiksen and K.W. Jacobsen, “Density functional theory studies of screw dislocation core structures in bcc metals”, Philos. Mag., 83, 365–375, 2003.

    Article  ADS  Google Scholar 

  13. G. Lu, N. Kioussis, V.V. Bulatov, and E. Kaxiras, “Generalized-stacking-fault energy surface and dislocation properties of aluminum”, Phys. Rev. B, 62, 3099–3108, 2000a; “The Peierls-Nabarro model revisited,” Philos. Mag. Lett., 80, 675–682, 2000b.

    Article  ADS  Google Scholar 

  14. Y.M. Juan and E. Kaxiras, “Generalized stacking fault energy surfaces and dislocation properties of silicon: a first-principles theoretical study”, Philos. Mag. A, 74, 1367–1384, 1996.

    Article  ADS  Google Scholar 

  15. R.H. Telling and M.I. Heggie, “Stacking fault and dislocation glide on the basal plane of graphite”, Philos. Mag. Lett., 83, 411–421, 2003.

    Article  ADS  Google Scholar 

  16. J. Ehmann and M. Fähnle, “Generalized stacking-fault energies for TiAl: mechanical instability of the (111) antiphase boundary”, Philos. Mag. A, 77, 701–714, 1998.

    Article  ADS  Google Scholar 

  17. S. Znam, D. Nguyen-Manh, D.G. Pettifor et al., “Atomistic modelling of TiAl. I. Bond-order potentials with environmental dependence”, Philos. Mag., 83, 415–438, 2003.

    Article  ADS  Google Scholar 

  18. U.V. Waghmare, V Bulatov, E. Kaxiras et al., “〈331〉 slip on 013 planes in molybdenum disilicide”, Philos. Mag. A, 79, 655–663, 1999.

    Article  ADS  Google Scholar 

  19. T.E. Mitchell, M.I. Baskes, R.G. Hoagland, and A. Misra, “Dislocation core structures and yield stress anomalies in molybdenum disilicide”, Intermetallics, 9, 849–856, 2001.

    Article  Google Scholar 

  20. M.L. Kronberg, “Zonal dislocations in hcp crystals”, Acta Metall., 9, 970, 1961.

    Article  Google Scholar 

  21. J.W. Christian and V. Vitek, “Dislocations and stacking faults”, Rep. Prog. Phys., 33, 307, 1970.

    Article  ADS  Google Scholar 

  22. F.R.N. Nabarro, “Dislocations in simple cubic lattice”, Proc. Phys. Soc. London B, 59, 256, 1947.

    Article  ADS  Google Scholar 

  23. K. Ohsawa, H. Koizumi, H.O.K. Kirchner, and T. Suzuki, “The critical stress in a discrete Peierls-Nabarro model”, Philos. Mag. A, 69, 171–181, 1994.

    Article  ADS  Google Scholar 

  24. G. Schoeck, “The Peierls energy revisited”, Philos. Mag. A, 79, 2629–2636, 1999.

    Article  ADS  Google Scholar 

  25. K. Ito and V. Vitek, “Atomistic study of non-Schmid effects in the plastic yielding of bcc metals”, Philos. Mag. A, 81, 1387–1407, 2001.

    Article  ADS  Google Scholar 

  26. C. Woodward and S.I. Rao, “Ab initio simulation of isolated screw dislocations in bcc Mo and Ta”, Philos. Mag. A, 81, 1305–1316, 2001.

    Article  ADS  Google Scholar 

  27. M. Mrovec, D. Nguyen-Manh, D.G. Pettifor, and V. Vitek, “Bond-order potential for molybdenum: application to dislocation behavior”, Phys. Rev. B, 69, 094115, 2004.

    Article  ADS  Google Scholar 

  28. J.W. Christian, “Some surprising features of the plastic deformation of body-centered cubic metals and alloys”, Metall. Trans. A, 14, 1237, 1983.

    Article  Google Scholar 

  29. M.S. Duesbery, V. Vitek, and D.K. Bowen, “Screw dislocations in bcc metals under stress”, Proc. Roy. Soc. London A, 332, 85, 1973.

    Article  ADS  Google Scholar 

  30. M.S. Duesbery, “On non-glide stresses and their influence on the screw dislocation core in bcc metals I: the Peierls stress”, Proc. Roy. Soc. London A, 392, 145–173, 1984.

    Article  ADS  Google Scholar 

  31. M.S. Duesbery and V. Vitek, “Plastic anisotropy in bcc transition metals”, Acta Mater., 46, 1481–1492, 1998.

    Article  Google Scholar 

  32. G.F. Wang, A. Strachan, T. Cagin et al., “Role of core polarization curvature of screw dislocations in determining the Peierls stress in bcc Ta: a criterion for designing high-performance materials”, Phys. Rev. B, 6714, 101, 2003.

    Google Scholar 

  33. V. Vitek, “Core structure of dislocations in body-centred cubic metals: relation to symmetry and interatomic bonding”, Philos. Mag., 84, 415–428, 2004.

    Article  ADS  Google Scholar 

  34. J.L. Bassani, K. Ito, and V. Vitek, “Complex macroscopic plastic flow arising from non-planar dislocation core structures”, Mat. Sci. Eng. A, 319, 97–101, 2001.

    Article  Google Scholar 

  35. V. Vitek, M. Mrovec, and J.L. Bassani, “Influence of non-glide stresses on plastic flow: from atomistic to continuum modeling”, Mater. Sci. Eng. A, 365, 31–37, 2004.

    Article  Google Scholar 

  36. J.E. Dorn and S. Rajnak, “Nucleation of kink pairs and the Peierls mechanism of plastic deformation”, Trans. TMS-AIME, 230, 1052, 1964.

    Google Scholar 

  37. M.S. Duesbery, “Dislocation motion in Nb”, Philos. Mag., 19, 501, 1969.

    Article  ADS  Google Scholar 

  38. C.H. Woo and M.P. Puls, “The Peierls mechanism in MgO”, Philos. Mag., 35, 1641–1652, 1977.

    Article  ADS  Google Scholar 

  39. A. Seeger, “Peierls barriers, kinks, and flow stress: recent progress”, Z Metallk, 93, 770–777, 2002.

    Google Scholar 

  40. A.H.W. Ngan and M. Wen, “Dislocation kink-pair energetics and pencil glide in body-centered-cubic crystals”, Phys. Rev. Lett., 8707, 5505, 2001.

    Google Scholar 

  41. S.I. Rao and C. Woodward, “Atomistic simulations of (a/2)〈111〉 screw dislocations in bcc Mo using a modified generalized pseudopotential theory potential”, Philos. Mag.A, 81, 1317–1327, 2001.

    Article  ADS  Google Scholar 

  42. L.H. Yang, and J.A. Moriarty, “Kink-pair mechanisms for a/2 〈111〉 screw dislocation motion in bcc tantalum”, Mater, Sci, Eng, A Struct Mater, 319, 124–129, 2001.

    Article  Google Scholar 

  43. L.H. Yang, P. Soderlind, and J.A. Moriarty, “Accurate atomistic simulation of (a/2) 〈111〉 screw dislocations and other defects in bcc tantalum”, Philos. Mag. A, 81, 1355–1385, 2001.

    Article  ADS  Google Scholar 

  44. J. Marian, W. Cai, and V.V. Bulatov, “Dynamic transitions from smooth to rough to twinning in dislocation motion”, Nature Materials, 3, 158–163, 2004.

    Article  ADS  Google Scholar 

  45. D.J. Bacon, and V. Vitek, “Atomic-scale modeling of dislocations and related properties in the hexagonal-close-packed metals”, Metal. Mater. Trans. A, 33, 721–733, 2002.

    Google Scholar 

  46. R. Schroll, V. Vitek, and P. Gumbsch, “Core properties and motion of dislocations in NiAl”, Acta Mater., 46, 903–918, 1998.

    Article  Google Scholar 

  47. R. Porizek, S. Znam, D. Nguyen-Manh, V. Vitek, and D.G. Pettifor, “Atomistic studies of dislocation glide in y-TiAl”, Defect Properties and Related Phenomena in Intermetallic Alloys, E.P. George, H. Inui, M.J. Mills, and G. Eggeler (eds.), Pittsburgh: Materials Research Society, vol. 753, p. BB4.3.1–BB4.3.6, 2003.

    Google Scholar 

  48. C. Woodward and S.I. Rao, “Ab initio simulation of a/2〈110〉 screw dislocations in γ-TiAl”, Philos. Mag., 84, 401–414, 2003.

    Google Scholar 

  49. M.I. Baskes and R.G. Hoagland, “Dislocation core structures and mobilities in MoSi2”, Acta Mater., 49, 2357–2364, 2001.

    Article  Google Scholar 

  50. K. Ito, H. Inui, Y. Shirai, and M. Yamaguchi, “Plastic deformation of MoSi2 single crystals”, Philos. Mag. A, 72, 1075–1097, 1995.

    Article  ADS  Google Scholar 

  51. T. Kruml, E. Conforto, B. LoPiccolo, D. Caillard, and J.L. Martin, “From dislocation cores to strength and work-hardening: A study of binary Ni3Al”, Acta Mater., 50, 5091–5101, 2002.

    Article  Google Scholar 

  52. J.-P. Poirier, and B. Vergobbi, “Unusual deformation properties of olivire”, Physics of the Earth and Planetary Interiors, 16, 370–382, 1978.

    Article  ADS  Google Scholar 

  53. J. Chang, C.T. Bodur, and A.S. Argon, “Pyramidal edge dislocation cores in sapphire”, Philos. Mag. Lett., 83, 659–666, 2003.

    Article  ADS  Google Scholar 

  54. N. Ide, I. Okada, and K. Kojima, “Computer simulation of core structure and Peierls stress of dislocations in anthracene crystals”, J. Phys.: Condens. Matter, 5, 3151–3162, 1993.

    Article  ADS  Google Scholar 

  55. P. Gumbsch, S. TaeriBaghbadrani, D. Brunner et al., “Plasticity and an inverse brittle-to-ductile transition in strontium titanate”, Phys. Rev. Lett., 8708, 5505+, 2001.

    Google Scholar 

  56. Z.L. Zhang, W. Sigle, W. Kurtz et al., “Electronic and atomic structure of a dissociated dislocation in SrTiO3”, Phys. Rev. B, 6621, 4112–4118, 2002a; “Atomic and electronic characterization of the a[100] dislocation core in SrTiO3”, Phys. Rev. B, 6609, 4108–4115, 2002b.

    Google Scholar 

  57. J.F. Justo, A. Antonelli, and A. Fazzio, “The energetics of dislocation cores in semiconductors and their role in dislocation mobility”, Physica B, 302, 398–402, 2001.

    Article  ADS  Google Scholar 

  58. V.V. Bulatov, J.F. Justo, W. Cai et al., “Parameter-free modelling of dislocation motion: the case of silicon”, Philos. Mag. A, 81, 1257–1281, 2001.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Vitek, V. (2005). Dislocation Cores and Unconventional Properties of Plastic Behavior. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_174

Download citation

Publish with us

Policies and ethics