Skip to main content

Ab Initio Molecular Dynamics Simulations of Biologically Relevant Systems

  • Chapter
Handbook of Materials Modeling

Abstract

Ab initio (Car-Parrinello) molecular dynamics (AIMD) simulations [1] are increasingly used to investigate structural, dynamical, energetic and electronic properties of biomolecules. At opposite to classical MD simulations, in this approach the underlying potential energy surface is calculated directly from first-principles. This leads to a parameter free molecular dynamics, where interatomic forces are not empirically derived, but are evaluated from electronic structure calculations as the simulations proceeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Car and M. Parrinello, Phys. Rev. Lett., 55, 2471, 1985.

    Article  ADS  Google Scholar 

  2. R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989.

    Google Scholar 

  3. P. Sherwood, In: Modern Methods and Algorithms of Quantum Chemistry, vol. 1, J. Grotendorst (ed.), John von Neumann Institute for Computing, Juelich, NIC Series, 1257, 2000.

    Google Scholar 

  4. M. Colombo, L. Guidoni, A. Laio, A. Magistrate, P. Maurer, S. Piana, U. Roehrig, K. Spiegel, M. Sulpizi, J. VandeVondele, M. Zumstain, and U. Rothlisberger, Chimia, 56, 13, 2002.

    Article  Google Scholar 

  5. A. Laio, J. VandeVondele, and U. Rothlisberger, J. Chem. Phys., 116, 6941, 2002.

    Article  ADS  Google Scholar 

  6. A. Warshel and M. Levitt, J. Mol. Biol., 7, 718, 1976.

    Google Scholar 

  7. D. Sebastiani and U. Röthlisberger, Advances in Density-Functional-Theory based Modeling Techniques — Recent Extension of the Car-Parrinello Approach. In: P. Carloni and F. Alber (eds.), Quantum Medicinal Chemistry, Chap 1. p. 5, 2002.

    Google Scholar 

  8. [8] M. Sulpizi, A. Laio, J. VandeVondele, A. Cattaneo, U. Rothlisberger, and P. Carloni, Proteins 52, 212–224, 2003.

    Article  Google Scholar 

  9. A. Magistrate, W.R. DeGrado, A. Laio, U. Rothlisberger, J. VandeVondele, and M.L. Klein, J. Phys. Chem. B, 107, 4182, 2003.

    Article  Google Scholar 

  10. L. Banci and P. Comba, Molecular Modeling and Dynamics of Bioinorganic Compounds, Kluwer Academic Publisher, Dorderecht, Boston, London, 1997.

    Google Scholar 

  11. A. Magistrate, P. Maurer, T. Fässler, and U. Rothlisberger, J. Phys. Chem. A, 108, 2008–2013, 2004.

    Article  Google Scholar 

  12. K. Spiegel, U. Rothlisberger, and P. Carloni, J. Phys. Chem. B, 108, 2699–2707, 2004.

    Article  Google Scholar 

  13. D. Marx and J. Flutter, “Ab initio molecular dynamics: theory and implementations,” In: J. Grotendorst (ed.), Modern Methods and Algorithms in Quantum Chemistry, John von Neumann Insitute for Computing, Julich, p. 301, 2000.

    Google Scholar 

  14. All calculations are performed with the code J. CPMD Hutter, A. Alavi, T. Deutsch, P. Ballone, M. Bernasconi, P. Focher, S. Goedecker, M. Tuckerman, and M. Parrinello, CPMD. Max-Planck-Institut für Festkörperforschung, Stuttgart and IBM Research Laboratory Zürich, 1995–-1999.

    Google Scholar 

  15. The calculations presented in the next section have been performed using the gradient corrected scheme developed by of Becke (A.D. Becke, Phys. Rev. A, 38, 3098–3100, 1988) for the exchange and by Lee, Yang and Parr (C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B, 37, 785–789, 1988), or Perdew (J.P. Perdew, Phys. Rev. B, 33, 8822, 1986), for the correlation part.

    Google Scholar 

  16. In all our calculations we have employed pseudopotentials of the Martins-Troullier type (M. Trouiller and J.L. Martins, Phys. Rev. B, 43, 1993, 1991.

    Google Scholar 

  17. M. Eichinger, P. Tavan, J. Hutter, and M. Parrinello, J. Chem. Phys., 21, 10452, 1999.

    Article  Google Scholar 

  18. U. Rothlisberger, To be published.

    Google Scholar 

  19. W.R.P. Scott, P. Hünemberger, LG. Tironi, A.E. Mark, S.R. Billiter, A.E. Torda, T. Huber, P. Krueger, and W.F. van Gunsteren, J. Phys. Chem. A, 103, 3596, 1999.

    Article  Google Scholar 

  20. D. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatham, S. Debolt, D. Ferguson, G. Seibel, and P. Kollman, Comput. Phys. Commun., 91, 1, 1995.

    Article  MATH  ADS  Google Scholar 

  21. P. Hünemberger, J. Chem. Phys., 113, 10464, 2000.

    Article  Google Scholar 

  22. S. Shimohama, Apoptosis, 5, 9, 2000.

    Article  Google Scholar 

  23. [23] M. Strajbl, J. Florian, and A. Warshel, J. Phys. Chem. B, 105, 4471, 2001.

    Article  Google Scholar 

  24. (a) B.J. Wallar and J.D. Lipscomb, Chem. Rev., 96, 2625–2657, 1996. (b) A.L. Feig and S.J. Lippard, Chem. Rev, 94, 759, 1994.

    Article  Google Scholar 

  25. S.J. Lange and L. Que Jr., Curr. Opin. Chem. Biol., 2, 159, 1998.

    Article  Google Scholar 

  26. R.E. Stenkamp, Chem. Rev, 94, 715, 1994.

    Article  Google Scholar 

  27. (a) A.K. Powell, Met. Ions. Biol. Syst., 35, 515, 1998. (b) P.M. Harrison, P.D. Hempstead, P.J. Artymiuk, and S.C. Andrews, Met. Ions. Biol. Syst., 3, 5, 435, 1998.

    Google Scholar 

  28. P. Nordlund and H. Eklung, Curr. Opin. Struct. Biol., 5, 758, 1995.

    Article  Google Scholar 

  29. (a) S.C. Gallagher, A. George, and H. Dalton, Eur. J. Biochem., 254, 480, 1998. (b) M. Lee, M. Lenman, A. Banas, M. Bator, S. Singh, N. Schweizer, R. Nilsson, C. Liljenberg, A. Dahlquist, and P.D. Gummeson, et al. Science, 280, 915, 1998.

    Article  Google Scholar 

  30. P. Nordlund, B.M. Sjörberg, and H. Eklund, Nature, 345, 593, 1990.

    Article  ADS  Google Scholar 

  31. A.E. Shilov and G.B. Shul’pin, Chem. Rev, 97, 2879, 1997.

    Article  Google Scholar 

  32. A.E. Shilov, Activation of Saturated Hydrocarbons by Transition Metal Complexes D, Riedel Publishing Co., Dordrecht, The Netherlands, 1984.

    Google Scholar 

  33. CM. Summa, A. Lomardi, M. Lewis, and W.F. DeGrado, Curr. Opin. Struct. Biol., 9, 500, 1999.

    Article  Google Scholar 

  34. A. Lomabrdi, CM. Summa, S. Geremia, L. Randaccio, V. Pavone, and W.F. DeGrado Proc. Natl. Acad. Sci. USA, 97, 6298, 2000.

    Article  ADS  Google Scholar 

  35. L. Di Costanzo, H. Wade, S. Geremia, L. Randaccio, V. Pavone, W.F. DeGrado, and A. Lombardi, J. Am. Chem. Soc., 123, 12749, 2001.

    Article  Google Scholar 

  36. M.C.J. Wilce, C.S. Bond, N.E. Dixon, H.C. Freeman, J.M. Guss, P.E. Lilley, and J.A. Wilce, Proc. Natl. Acad. Sci. USA, 95, 3472, 1998.

    Article  ADS  Google Scholar 

  37. S.P. Liu, J. Widom, C.W. Kemp, CM. Crews, and J. Clardy, Science, 282, 1324, 1998.

    Article  ADS  Google Scholar 

  38. G.C Dismukes, Chem. Rev, 96, 2909, 1996.

    Article  Google Scholar 

  39. M. Dal Peraro, A.J. Vila, and P. Carloni, J. Biol. Inorg. Chem., 7, 704, 2002.

    Article  Google Scholar 

  40. A. Magistrate, W.F. DeGrado, and M.L. Klein, To be published.

    Google Scholar 

  41. J.R. Dilworth and S.J. Parrott, Chem. Soc. Rev, 27, 43, 1998.

    Article  Google Scholar 

  42. W.A. Volkert and S. Jurisson, Technetium and Rhenium, 176, 123, 1996.

    Google Scholar 

  43. S. Prakash, M.J. Went, and P.J. Blower, Nucl. Med. Biol., 23, 543, 1996.

    Article  Google Scholar 

  44. [44] G. Schoeneich, H. Palmedo, D. Heimbach, HJ. Biersack, and S.C. Muller, Onkologie, 20, 316, 1997.

    Article  Google Scholar 

  45. http://www.cardiolite.com.

  46. (a) G.E.D. Mullen, M.J. Went, S. Wocadlo, A.K. Powell, and P.J. Blower, Angew. Chem. Int. Ed. Engl, 36, 1205, 1997. (b) G.E.D. Mullen, P.J. Blower, D.J. Price, A.K. Powell, M.J. Howard, and M.J. Went, Inorg. Chem., 39, 4093, 2000.

    Article  Google Scholar 

  47. G.E.D. Mullen, ET. Fässler, M.J. Went, K. Howland, B. Stein, and P.J. Blower, J. Chem. Soc., Dalton Trans., 21, 3759, 1999.

    Article  Google Scholar 

  48. J. Redijk, Proc. Natl. Acad. Sci. USA, 100, 3611, 2003.

    Article  ADS  Google Scholar 

  49. P. Carloni, M. Sprik, and W. Andreoni, J. Phys. Chem. B, 104, 823, 2000.

    Article  Google Scholar 

  50. P.M. Takahara, A.C. Rosenzweig, C.A. Frederick, and S.J. Lippard, Nature, 377, 649–652, 1995.

    Article  ADS  Google Scholar 

  51. A. Gelasco and S.J. Lippard, Biochemistry, 37, 9230, 1998.

    Article  Google Scholar 

  52. M.A. Elizondo-Riojas and J. Kozelka, J. Mol. Biol., 314, 1227, 2001.

    Article  Google Scholar 

  53. P. Carloni and U. Rothlisberber, In: L. Eriksson (ed.), Theoretical Biochemistry — processes and Properties of Biological Systems, Elsevier Science, New York, 2000.

    Google Scholar 

  54. W. Andreoni, A. Curioni, and T. Mordasini, IBM J. Res. Dev., 45, 397, 2001.

    Article  Google Scholar 

  55. P. Carloni, U. Rothlisberger, and M. Parrinello, Acc. Chem. Res., 35, 455, 2002.

    Article  Google Scholar 

  56. D. Sebastiani and Parrinello, J. Phys. Chem. A, 105, 1951, 2001.

    Article  Google Scholar 

  57. P. Silvestrelli and M. Parrinello, Phys. Rev. Lett., 82, 3308, 1999.

    Article  ADS  Google Scholar 

  58. I. Frank, J. Hutter, D. Marx, and M. Parrinello, J. Chem. Phys., 108, 4060, 1998.

    Article  ADS  Google Scholar 

  59. (a) E.K.U. Gross, F.J. Dobson, and M. Petersilka, Density Functional Theory, Springer, Berlin 1996. (b) M.E. Casida, In: D.P. Chong (ed.), Recent Advances in Density Functional Methods, World Scientific, Singapore, 1995.

    Google Scholar 

  60. U. Rohrig, L. Guidoni, A. Laio, J. VandeVondele, and U. Rothlisberger, To be published.

    Google Scholar 

  61. S. Raugei, M.L. Klein, J. Am. Chem. Soc., 125, 8992, 2003.

    Article  Google Scholar 

  62. D.B. Northrop, Acc. Chem. Res., 34, 790, 2001.

    Article  Google Scholar 

  63. K.M. Doll, B.R. Bender, and R.G. Finke, J. Am. Chem. Soc., 125, 10877, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Magistrate, A., Carloni, P. (2005). Ab Initio Molecular Dynamics Simulations of Biologically Relevant Systems. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_14

Download citation

Publish with us

Policies and ethics