Skip to main content

The Direct Simulation Monte Carlo Method: Going Beyond Continuum Hydrodynamics

  • Chapter
Handbook of Materials Modeling
  • 348 Accesses

Abstract

The Direct Simulation Monte Carlo method is a stochastic, particle-based algorithm for solving kinetic theory’s Boltzmann equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York, 1988.

    MATH  Google Scholar 

  2. G.A. Bird, Molecular Gas Dynamics, Clarendon, Oxford, 1976; G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon, Oxford, 1994.

    Google Scholar 

  3. A.L. Garcia, Numerical Methods for Physics, Prentice Hall, Englewood Cliffs, 1994.

    Google Scholar 

  4. E.S. Oran, C.K. Oh, and B.Z. Cybyk, Annu. Rev. Fluid Meek, 30, 403, 1998.

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Fallavollita, D. Baganoff, and J. McDonald, J. Comput. Phys., 109, 30, 1993; G. Chen and I. Boyd, J. Comput. Phys., 126, 434, 1996.

    Article  MATH  ADS  Google Scholar 

  6. A.L. Garcia and F. Baras, Proceedings of the Third Workshop on Modeling of Chemical Reaction Systems, Heidelberg, 1997 (CD-ROM only).

    Google Scholar 

  7. I. Boyd, G. Chen, and G. Candler, Phys. Fluids, 7, 210, 1995.

    Article  MATH  ADS  Google Scholar 

  8. R Alexander, A.L. Garcia, and B. Alder, Phys. Rev. Lett., 74, 5212, 1995; R Alexander, A.L. Garcia, and B. Alder, in 25 Years of Non-Equilibrium Statistical Mechanics, J.J. Brey, J. Marco, J.M. Rubi, and M. San Miguel (eds.), Springer, Berlin, 1995; A. Frezzotti, A particle scheme for the numerical solution of the Enskog equation, Phys. Fluids, 9(5), 1329–1335, 1997.

    Article  ADS  Google Scholar 

  9. N. Hadjiconstantinou, A. Garcia, M. Bazant, and G. He, J. Comput. Phys., 187, 274–297, 2003.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. R Baras, M.M. Mansour, A.L. Garcia, and M. Mareschal, J. Comput. Phys., 119, 94, 1995.

    Article  MATH  ADS  Google Scholar 

  11. F.J. Alexander, A.L. Garcia, and B.J. Alder, Phys. Fluids, 6, 3854, 1994.

    Article  MATH  ADS  Google Scholar 

  12. J.M. Montanere and A. Santos, Phys. Rev. E, 54, 438, 1996; J. M. Montanere and A. Santos, Phys. Fluids, 9, 2057, 1997.

    Article  ADS  Google Scholar 

  13. H.J. Herrmann and S. Luding, Continuum Mechanics and Thermodynamics, 10, 189, 1998; J. Javier Brey, R Moreno, R. García-Rojo, and M.J. Ruiz-Montero, “Hydrodynamic Maxwell demon in granular systems,” Phys. Rev. E, 65, 011305, 2002.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. G. Kortemeyer, R Daffin, and W. Bauer, Phys. Lett. B, 374, 25, 1996.

    Article  ADS  Google Scholar 

  15. C. Jacoboni and L. Reggiani, Rev. Mod. Phys., 55, 645, 1983.

    Article  ADS  Google Scholar 

  16. W. Wagner, J. Stat. Phys., 66, 1011, 1992.

    Article  MATH  ADS  Google Scholar 

  17. RJ. Alexander, A.L. Garcia, and B.J. Alder, Phys. Fluids, 10, 1540, 1998; Phys. Fluids, 12,731, 2000.

    Article  ADS  Google Scholar 

  18. N.G. Hadjiconstantinou, Phys. Fluids, 12, 2634, 2000.

    Article  ADS  Google Scholar 

  19. L. Pareschi and R.E. Caflisch, J. Comput. Phys., 154, 90, 1999.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. H.S. Wijesinghe and N.G. Hadjiconstantinou, “Hybrid atomistic-continuum formulations for multiscale hydrodynamics”, Article 8.8, this volume.

    Google Scholar 

  21. A.L. Garcia, J.B. Bell, W.Y. Crutchfield, and B.J. Alder, J. Comput. Phys., 154, 134, 1999.

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Alexander, F.J. (2005). The Direct Simulation Monte Carlo Method: Going Beyond Continuum Hydrodynamics. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_132

Download citation

Publish with us

Policies and ethics