Skip to main content

Crystal Disordering in Melting and Amorphization

  • Chapter
Handbook of Materials Modeling

Abstract

Among the structural phase transitions that evolve from an initially crystalline state, melting is the most common and most extensively studied. Another transformation that produces a disordered final state is solid-state amorphization. In this section the underlying thermodynamic and kinetic features of these two phenomena in a bulk lattice and at surfaces and grain boundaries will be discussed [1]. By focusing on the insights derived from molecular-dynamics simulations, we are led quite naturally to a view of structural disordering that unifies the crystal-to-liquid (C-L) and crystal-to-amorphous (C-A) transitions at high and low temperatures, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.R. Phillpot, S. Yip, P.R. Okamoto, and D. Wolf, “Role of interfaces in melting and solid-state amorphization”, In: D. Wolf and S. Yip (eds.), Materials Interfaces, Chapman and Hall, London, pp. 228–254, 1992.

    Google Scholar 

  2. A.R. Ubbelohde, Molten State of Matter: Melting and Crystal Structure, Wiley, Chichester, 1978.

    Google Scholar 

  3. R.W. Cahn, “Melting and the surface”, Nature, 323, 668–669, 1986.

    Article  ADS  Google Scholar 

  4. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, 1954.

    MATH  Google Scholar 

  5. J. Broughton and X.P. Li, “Phase diagram of silicon by molecular dynamics”, Phys. Rev. B, 35, 9120–9127, 1987.

    Article  ADS  Google Scholar 

  6. S.P. Phillpot, J.F. Lutsko, D. Wolf, and S. Yip, “Molecular-dynamics simulation of lattice-defect-nucleated melting in silicon”, Phys. Rev. B, 40, 2831–2840, 1989.

    Article  ADS  Google Scholar 

  7. S.R. Phillpot, S. Yip, and D. Wolf, “How crystals melt”, Comput. in Phys., 3, 20, 1989.

    ADS  Google Scholar 

  8. J.F. Lutsko, D. Wolf, S.R. Phillpot, and S. Yip, “Molecular-dynamics study of latticedefect-nucleated melting in metals using an embedded atom method potential”, Phys. Rev. B, 40, 2841–2855, 1989.

    Article  ADS  Google Scholar 

  9. M. Born, J. Chem. Phys., 7, 591, 1939.

    Article  ADS  Google Scholar 

  10. M. Born, Proc. Cambridge Philos. Soc., 36, 160, 1940.

    Article  MathSciNet  Google Scholar 

  11. J. Wang, J. Li, S. Yip, D. Wolf, and S. Phillpot, “Unifying two criteria of born: elastic instability and melting of homogenous crystals”, Physica A, 240, 396–403, 1997.

    Article  ADS  Google Scholar 

  12. J. Ray, “Elastic constants and statistical ensembles in molecular dynamics,“ Comput. Phys. Rep., 8, 111–151, 1988.

    Article  ADS  Google Scholar 

  13. L.L. Boyer, Phase Transitions, 5, 1, 1985.

    Article  Google Scholar 

  14. J.L. Tallon, Crystal instability and melting, Nature, 342, 658–658, 1989.

    Article  ADS  Google Scholar 

  15. J. Wang, J. Li, S. Yip, S. Phillpot, and D. Wolf, “Mechanical instabilities of homogenous crystals”, Phys. Rev. B, 52, 12627–12635, 1985.

    Article  ADS  Google Scholar 

  16. H. Gleiter and B. Chalmers, High-Angle Boundaries, Pergamon, Oxford, p. 113, 1972.

    Google Scholar 

  17. V. Pontikis, “Grain-boundary structure and phase transformations-a critical review of computer-simulation studies and comparison with experiments”, J. de Phys., 49,C5, 327–338, 1988.

    Google Scholar 

  18. T.E. Hsieh and R.W. Balluffi, “Experimental study of grain-boundary melting in aluminum”, Acta Metall., 37, 1637–1644, 1989.

    Article  Google Scholar 

  19. T. Nguyen, P.S. Ho, T. Kwok, C. Nitta, and S. Yip, “Thermal structural disorder and melting at a crystalline interface”, Phys. Rev. B, 10, 6050–6060, 1992.

    Article  ADS  Google Scholar 

  20. F.H. Stillinger and T.A. Weber, “Computer simulation of local order in condensed phases of silicon”, Phys. Rev. B, 31, 5262–5271, 1985.

    Article  ADS  Google Scholar 

  21. W.L. Johnson, “Thermodynamics and kinetic aspects of the crystal to glass TRna sition in metallic materials”, Prog. Mat. Sci., 30, 81–134, 1986.

    Article  Google Scholar 

  22. P.R. Okamoto and M. Meshii, In: H. Wiedersich and M. Meshii (eds.), Science of Advanced Materials, ASM International, Metals Park, OH, p. 33, 1990.

    Google Scholar 

  23. M. de Koning, A. Antonelli, and S. Yip, “Single-simulation determination of phase boundaries: a dynamic clausius-clapeyron integration method”, J. Chem. Phys., 115, 11025–11035, 2001.

    Article  ADS  Google Scholar 

  24. Z.H. Jin, P. Gumbsch, K. Lu, and E. Ma, “Melting mechanisms at he limit of superheating”, Phys. Rev. Lett., 87, 055703, 2001.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Yip, S., Phillpot, S.R., Wolf, D. (2005). Crystal Disordering in Melting and Amorphization. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_104

Download citation

Publish with us

Policies and ethics