Skip to main content

Dephasing and Dynamic Localization in Quantum Dots

  • Chapter
Fundamental Problems of Mesoscopic Physics

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 154))

  • 343 Accesses

Abstract

The effects of dynamic localization in a solid-state system — a quantum dot — are considered. The theory of weak dynamic localization is developed for non-interacting electrons in a closed quantum dot under arbitrary time-dependent perturbation and its equivalence to the theory of weak Anderson localization is demonstrated. The dephasing due to inelastic electron scattering is shown to destroy the dynamic localization in a closed quantum dot leading to the classical energy absorption at times much greater than the inelastic scattering time. Finally a realistic case of a dot weakly connected to leads is studied and it is shown that the dynamic localization may lead to a drastic change of the shape of the Coulomb blockade peak in the dc conductance vs the gate voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Casati, B. V. Chirikov, J. Ford, and F. M. Izrailev, in Stochastic Behaviour in Classical and Quantum Hamiltonian Systems, ed. by G. Casati and J. Ford, Lecture Notes in Physics, vol. 93 (Springer, Berlin, 1979).

    Chapter  Google Scholar 

  2. F. L. Moore, et al. Phys. Rev. Lett. 73, 2974 (1994).

    Article  CAS  ADS  PubMed  Google Scholar 

  3. S. Fishman et al. Phys. Rev. Lett. 49, 509 (1982); D. R. Grempel, R. E. Prange, and S. Fishman, Phys. Rev. A 29, 1639 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  4. Y. Gefen and D. J. Thouless, Phys. Rev. Lett. 59, 1752 (1987).

    Article  ADS  PubMed  Google Scholar 

  5. B. V. Chirikov, F. M. Izrailev, and D. L. Shepelyansky, Physica (Amsterdam) 33D, 77 (1988); G. Casati, L. Molinari, and F. Izrailev, Phys. Rev. Lett. 64, 1851 (1990).

    ADS  MathSciNet  Google Scholar 

  6. Y. V. Fyodorov and A. D. Mirlin, Phys. Rev. Lett. 67, 2405 (1991).

    Article  ADS  PubMed  MathSciNet  MATH  Google Scholar 

  7. A. Altland and M. R. Zirnbauer, Phys. Rev. Lett. 77, 4536 (1996).

    Article  CAS  ADS  PubMed  Google Scholar 

  8. V. I. Yudson, E. Kanzieper, and V. E. Kravtsov, Phys. Rev. B 64, 045310 (2001).

    Article  ADS  Google Scholar 

  9. M. G. Vavilov and I. L. Aleiner, Phys. Rev. B 60, R16311 (1999); 64, 085115 (2001); M. G. Vavilov, I. L. Aleiner, and V. Ambegaokar, Phys. Rev. B 63, 195313 (2001).

    Article  CAS  ADS  Google Scholar 

  10. X.-B. Wang and V. E. Kravtsov, Phys. Rev. B 64, 033313 (2001); V. E. Kravtsov, Pramana-Journal of Physics, 58, 183 (2002).

    Article  ADS  Google Scholar 

  11. D. M. Basko, M. A. Skvortsov and V. E. Kravtsov, Phys. Rev. Lett. 90, 096801 (2003).

    Article  CAS  ADS  PubMed  Google Scholar 

  12. D. M. Basko, Phys. Rev. Lett. 91, 206801 (2003).

    Article  CAS  ADS  PubMed  Google Scholar 

  13. L. V. Keldysh, Zh. Exp. Teor. Fiz., 47, 515 (1964) [Sov. Phts.-JETP, 20, 1018 (1965)]; J. Rammer and H. Smith, Rev. Mod. Phys., 58, 323 (1986).

    Google Scholar 

  14. L. P. Gorkov, A. I. Larkin, and D. E. Khmelnitskii, JETP Letters, 30, 228 (1979).

    ADS  Google Scholar 

  15. A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics, Pergamon Press, New York (1965).

    Google Scholar 

  16. B. L. Altshuler, A. G. Aronov and D. E. Khmelnitskii, J. Phys. C 15, 7367 (1982).

    Article  CAS  ADS  Google Scholar 

  17. M. A. Skvortsov, D. M. Basko, V. E. Kravtsov (unpublished).

    Google Scholar 

  18. G. Casati, I. Guarneri, and D. L. Shepelyansky, Phys. Rev. Lett. 62, 345 (1989).

    Article  ADS  PubMed  Google Scholar 

  19. U. Sivan, Y. Imry, and A. G. Aronov, Europhys. Lett. 28, 115 (1994).

    Article  CAS  ADS  Google Scholar 

  20. B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov, Phys. Rev. Lett. 78, 2803 (1997).

    Article  CAS  ADS  Google Scholar 

  21. I. L. Aleiner, P. W. Brouwer, and L. I. Glazman, Phys. Rep. 358, 309 (2002).

    Article  CAS  ADS  Google Scholar 

  22. D. M. Basko and V. E. Kravtsov, cond-mat/0312191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kravtsov, V. (2004). Dephasing and Dynamic Localization in Quantum Dots. In: Lerner, I.V., Altshuler, B.L., Gefen, Y. (eds) Fundamental Problems of Mesoscopic Physics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 154. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2193-3_6

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2193-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2192-3

  • Online ISBN: 978-1-4020-2193-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics