Skip to main content

3D Core-Collapse Supernova Calculations

  • Conference paper
  • 331 Accesses

Part of the book series: NATO Science Series ((NAII,volume 166))

Abstract

Recent observations of the polarization of the light emitted by supernova explo-sions indicate that there are large deviations from spherical symmetry in the very heart of these explosions. Asymmetries may well play a key role in the explosion mechanism. So far there is no convincing theoretical explanation for these observations. In this work the impact of angular momentum on the core collapse which is possibly the origin of large asymmetries is studied. We introduce a new approach to the supernova problem: a three dimensional test particle based simulation. The infall phase of the collapse of a typical iron core is investigated using numerical calculations. Our main focus is the impact of angular momentum. Significant deviations from spherical symmetry are found for rapidly rotating supernova cores.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.R. Wilson, Numerical astrophysics, p. 422, Jones and Bartlett, Boston, 1985.

    Google Scholar 

  2. M. Herant, W. Benz, W.R. Hix, C.L. Fryer, and S.A. Colgate, Astrophys. J. 435 (1994), 339–361.

    Article  ADS  Google Scholar 

  3. C.L. Fryer and A. Heger, Astrophys. J. 541 (2000), 1033–1050.

    Article  ADS  Google Scholar 

  4. R. Buras, M. Rampp, H.-Th. Janka, and K. Kifonidis, Phys. Rev. Lett. 90 (2003), no. 24, 24 1101.

    Google Scholar 

  5. H.-Th. Janka, R. Buras, and M. Rampp, Nucl. Phys. A 718 (2003), 269c.

    Article  ADS  Google Scholar 

  6. A. Mezzacappa, M. Liebend~orfer, O.E.B. Msser, W.R. Hix, F.-K. Thielemann, and S.W. Bruenn, Phys. Rev. Lett. 86 (2001), no. 10, 1935.

    Article  ADS  Google Scholar 

  7. T.A. Thompson, A. Burrows, and P.A. Pinto, Astrophys. J. 592 (2003), 434.

    Article  ADS  Google Scholar 

  8. M. Herant, W. Benz, and S. Colgate, Astrophys. J. 395 (1992), 642–653.

    Article  ADS  Google Scholar 

  9. S. Yamada and K. Sato, Astrophys. J. 434 (1994), 268–276.

    Article  ADS  Google Scholar 

  10. C.L. Fryer and M.S. Warren, Astrophys. J. 574 (2002), L65.

    Article  ADS  Google Scholar 

  11. K. Langanke, G. Martinez-Pinedo, J.M. Sampaio, D. J. Dean, W.R. Hix, O.E.B. Messer, A. Mezzacappa, M. Liebend~orfer, H.-Th. Janka, and M. Rampp, Phys. Rev. Lett. 90 (2003), no. 24, 24 1102.

    Google Scholar 

  12. K. Kotake, S. Yamada, K. Sato, and T.M. Shimizu, Nucl. Phys. A 718 (2003), 629c.

    Article  ADS  Google Scholar 

  13. L. Wang, D.A. Howell, P. Hoflich, and J.C. Wheeler, Astrophys. J. 550 (2001), 1030–1035.

    Article  ADS  Google Scholar 

  14. L. Wang, J.C. Wheeler, Z. Li, and A. Clocchiatti, Astophys. J. 467 (1996), 435–445.

    Article  ADS  Google Scholar 

  15. L. Wang and J.C. Wheeler, Sky and Telescope (2002).

    Google Scholar 

  16. T. Bollenbach and W. Bauer, in “Exotic Clustering”, edited by S. Costa, A. Insolia, and C. Tuve, American Institute of Physics Conference Proceedings, Volume 644 ( Melville, New York, 2002 ), p. 219–232.

    Google Scholar 

  17. C.-Y. Wong, Phys. Rev. C 25 (1982), no. 3, 1460–1475.

    Article  ADS  Google Scholar 

  18. G.F. Bertsch et al., Phys. Rev. C 29 (1984) 673.

    Article  ADS  Google Scholar 

  19. H. Kruse et al., Phys. Rev. Lett. 54 (1985) 289.

    Article  ADS  Google Scholar 

  20. W. Bauer, G.F. Bertsch, W. Gassing, and U. Mosel, Phys. Rev. C 34 (1986), 2127.

    Google Scholar 

  21. H. Stocker, and W. Greiner, Phys. Rep. 137 (1986) 277.

    Article  ADS  Google Scholar 

  22. G.F. Bertsch and S. Das Gupta, Phys. Rep. 160 (1988) 189.

    Article  ADS  Google Scholar 

  23. P. Schuck et al., Prog. Part. Nucl. Phys. 22 (1989) 181.

    Article  ADS  Google Scholar 

  24. W.G. Gong, W. Bauer, C.K. Gelbke, and S. Pratt, Phys. Rev. C 43 (1991), 781.

    Article  ADS  Google Scholar 

  25. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical recipes in c, seconded., Press Syndicate of the University of Cambridge, Cambridge, UK, 1988.

    Google Scholar 

  26. Tobias Bollenbach, Numerical study of rotating core collapse supernovae, Master’s thesis, Michigan State University, East Lansing, MI, 2002.

    Google Scholar 

  27. J.M. Lattimer and F.D. Swesty, http://www.ess.sunysb.edu/dswesty/lseos.html, 1993.

  28. J.M. Lattimer and F.D. Swesty, Nucl. Phys. A 535 (1991), 331–367.

    Article  ADS  Google Scholar 

  29. F.X. Timmes, http://www.flash.uchicago.edu/fxt/code pages/eos.shtml, 2000.

  30. F.X. Timmes and F.D. Swesty, Astrophys. J. Suppl. S. 126 (2000), 501–516.

    Article  ADS  Google Scholar 

  31. J. Cooperstein and J. Wambach, Nucl. Phys. A 420 (1984), 591–620.

    Article  ADS  Google Scholar 

  32. J. Cooperstein, Nucl. Phys. A 438 (1985), 722–739.

    Google Scholar 

  33. S.E. Woosley and T.A. Weaver, Ann. Rev. Astron. Astrophys. 24 (1986), 205–253.

    Article  ADS  Google Scholar 

  34. T.A. Weaver, G.B. Zimmermann, and S.E. Woosley, Astrophys. J. 225 (1978), 1021–1029.

    Article  ADS  Google Scholar 

  35. H.A. Bethe, Rev. Mod. Phys. 62 (1990), 4, 801–866.

    Article  ADS  Google Scholar 

  36. A. Heger, N. Langer, and S.E. Woosley, Astrophys.J. 528 (2000), 368–396.

    Article  ADS  Google Scholar 

  37. T. Zwerger and E. Muller, Astron. Astrophys. 320 (1997), 209–227.

    ADS  Google Scholar 

  38. E. Baron, J. Cooperstein, and S. Kahana, Nucl. Phys. A 440 (1985), 744–754.

    Article  ADS  Google Scholar 

  39. A.G. Lyne and D.R. Lorimer, Nature 369 (1994), 127.

    Article  ADS  Google Scholar 

  40. C.J. Horowitz and Gang Li, Phys. Rev. Lett. 80 (1998), 3694–3697.

    Article  ADS  Google Scholar 

  41. C.J. Horowitz and J. Piekarewicz, Nucl. Phys. A 640 (1998), 281–290.

    Article  ADS  Google Scholar 

  42. S.J. Wang, B.-A. Li, W. Bauer, and J. Randrup, Annals of Physics 209, 251 (1991).

    Article  ADS  Google Scholar 

  43. W. Bauer, http://www.mocha.phys.washington.edu/int talk/WorkShops/RIA/People/Bauer.W/Bauer.- RIA.pdf (2004).

  44. G. Kortemeyer, F. Daffin, and W. Bauer, Phys. Lett. B374, 25 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bollenbach, T., Strother, T., Bauer, W. (2004). 3D Core-Collapse Supernova Calculations. In: Greiner, W., Itkis, M.G., Reinhardt, J., Güçlü, M.C. (eds) Structure and Dynamics of Elementary Matter. NATO Science Series, vol 166. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2705-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2705-5_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2446-7

  • Online ISBN: 978-1-4020-2705-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics