Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 166))

Abstract

Three empirical lines of evidence, (P QCD , p QCD, dA), from RHIC have converged and point to the discovery of a strongly coupled Quark Gluon Plasma. The evidence includes (1) bulk collective elliptic flow and (2) jet quenching and mono jet production, observed in Au+Au collisions at 200 AGeV, and (3) a critical control experiment using D+Au at 200 AGeV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Fodor and S. D. Katz, arXiv:hep-lat/0402006. F. Csikor et al arXiv:hep-lat/0401022.

    Google Scholar 

  2. C. R. Allton et al, Phys. Rev. D 68, 014507 (2003) [arXiv:hep-lat/0305007]. F. Karsch, E. Laermann and A. Peikert, Phys. Lett. B 478, 447 (2000) [arXiv:hep-lat/0002003].

    Google Scholar 

  3. S. Gupta, Pramana61, 877 (2003) [arXiv:hep-ph/0303072].

    Google Scholar 

  4. M. A. Halasz et al, Phys. Rev. D 58, 096007 (1998) [arXiv:hep-ph/9804290]. M. A. Stephanov, K. Rajagopal and E. V. Shuryak, Phys. Rev. Lett. 81, 4816 (1998) [arXiv:hep-ph/9806219].

    Google Scholar 

  5. F. Karsch, K. Redlich and A. Tawfik, Phys. Lett. B 571,67 (2003) [arXiv:hep-ph/0306208].

    Google Scholar 

  6. D. H. Rischke, Prog. Part. Nucl. Phys. 52, 197 (2004) [arXiv:nucl-th/0305030].

    Google Scholar 

  7. J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353 (1975); B. A. Freedman and L. D. McLerran, Phys. Rev. D 16, 1169 (1977); G. Chapline and M. Nauenberg, Phys. Rev. D 16, 450 (1977).

    Google Scholar 

  8. T. D. Lee and G. C. Wick, Phys. Rev. D 9, 2291 (1974).

    Article  ADS  Google Scholar 

  9. J. Hofmann, H. St¨o cker, W. Scheid and W. Greiner, On The Possibility Of Nuclear Shock Waves In Relativistic Heavy Ion Collisions, Bear Mountain Workshop, New York, Dec

    Google Scholar 

  10. H. G. Baumgardt et al., “Shock Waves And Mach Cones In Fast Nucleus-Nucleus Collisions,” Z. Phys. A 273, 359 (1975).

    Google Scholar 

  11. L. Csernai and H. St¨o cker, Phys. Rev. C 25, 3208 (1981).

    Article  ADS  Google Scholar 

  12. H. St¨o cker and W. Greiner, Phys. Rept. 137, 277 (1986).

    Article  ADS  Google Scholar 

  13. W. Reisdorf and H. G. Ritter, Ann. Rev. Nucl. Part. Sci. 47, 663 (1997).

    Article  ADS  Google Scholar 

  14. M. Gyulassy, I. Vitev, X. N. Wang and B. W. Zhang, arXiv:nucl-th/0302077. M. Gyulassy, Lect. Notes Phys. 583, 37 (2002) [arXiv:nucl-th/0106072].

    Google Scholar 

  15. R. Baier, D. Schiff and B.G. Zakharov, Ann. Rev. Nucl. Part. Sci.50, 37 (2000) [arXiv:hepph/0002198].

    Google Scholar 

  16. M. Gyulassy and M. Plumer, Nucl. Phys. A 527, 641 (1991).

    Google Scholar 

  17. M. Gyulassy, M. Plumer, M. Thoma and X. N. Wang, Nucl. Phys. A 538, 37C (1992)

    Google Scholar 

  18. X. Wang and M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992).

    Article  ADS  Google Scholar 

  19. L. McLerran, arXiv:hep-ph/0402137. E. Iancu and R. Venugopalan, arXiv:hepph/0303204. L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233 (1994) [arXiv:hep-ph/9309289].

    Google Scholar 

  20. D. Kharzeev and E. Levin, Phys. Lett. B 523, 79 (2001) [arXiv:nucl-th/0108006].

    Google Scholar 

  21. K. J. Eskola, K. Kajantie, P. V. Ruuskanen and K. Tuominen, Phys. Lett. B 543,208 (2002)

    Google Scholar 

  22. K. J. Eskola, K. Kajantie, P. V. Ruuskanen and K. Tuominen, [arXiv:hep-ph/0204034]; Phys. Lett. B 532, 222 (2002) [arXiv:hep-ph/0201256].

    Google Scholar 

  23. M. G. Alford, J. Berges and K. Rajagopal, Nucl. Phys. B 571, 269 (2000) [arXiv:hepph/9910254].

    Google Scholar 

  24. H. St¨o cker, J. A. Maruhn and W. Greiner, Phys. Rev. Lett. 44, 725 (1980).

    Article  ADS  Google Scholar 

  25. H. St¨o cker et al., Phys. Rev. C 25, 1873 (1982).

    Google Scholar 

  26. J. Y. Ollitrault, Phys. Rev. D 46, 229 (1992).

    Google Scholar 

  27. S. A. Voloshin and A. M. Poskanzer, Phys. Lett. B 474,27 (2000) [arXiv:nucl-th/9906075].

    Google Scholar 

  28. C. Alt et al. [NA49 Collaboration], Phys. Rev. C 68, 034903 (2003) [arXiv:nuclex/0303001].

    Google Scholar 

  29. G. Stoicea et al., arXiv:nucl-ex/0401041.

    Google Scholar 

  30. J. Adams et al. [STAR Collaboration], arXiv:nucl-ex/0310029, Phys. Rev. Lett. 92 (2004) 062301.

    Google Scholar 

  31. P. R. Sorensen, arXiv:nucl-ex/0309003. Ph.D. thesis.

    Google Scholar 

  32. J. Adams et al. [STAR Collaboration], arXiv:nucl-ex/0306007, Phys. Rev. Lett. 92 (2004) 052302

    Google Scholar 

  33. C. Adler et al. [STAR Collaboration], Phys. Rev. C 66, 034904 (2002) [arXiv:nuclex/0206001].

    Google Scholar 

  34. S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. Lett. 91,182301(2003) [arXiv:nuclex/0305013].

    Google Scholar 

  35. B. B. Back et al. [PHOBOS collaboration], Nucl. Phys. A 715, 65 (2003) [arXiv:nuclex/0212009].

    Google Scholar 

  36. Y. Cheng, F. Liu, Z. Liu, K. Schweda and N. Xu, Phys. Rev. C 68, 034910 (2003).

    Google Scholar 

  37. N. Xu et al. [NA44 Collaboration], Nucl. Phys. A 610, 175C (1996).

    Google Scholar 

  38. P. F. Kolb, P. Huovinen, U. W. Heinz and H. Heiselberg, Phys. Lett. B 500, 232 (2001).

    Article  ADS  Google Scholar 

  39. P. Huovinen, P. F. Kolb, U. W. Heinz, P. V. Ruuskanen and S. A. Voloshin, Phys. Lett. B 503, 58 (2001).

    Article  ADS  Google Scholar 

  40. P. F. Kolb, U. W. Heinz, P. Huovinen, K. J. Eskola and K. Tuominen, Nucl. Phys. A 696, 197 (2001).

    Article  ADS  Google Scholar 

  41. P. Huovinen, arXiv:nucl-th/0305064.

    Google Scholar 

  42. P. F. Kolb and U. Heinz, arXiv:nucl-th/0305084.

    Google Scholar 

  43. D. Teaney, J. Lauret and E. V. Shuryak, nucl-th/0104041.

    Google Scholar 

  44. D. Teaney, J. Lauret and E. V. Shuryak, arXiv:nucl-th/0110037.

    Google Scholar 

  45. D. Teaney, Phys. Rev. C 68, 034913 (2003). D. Teaney, arXiv:nucl-th/0301099.

    Google Scholar 

  46. T. Hirano and Y. Nara, Phys. Rev. Lett. 91, 082301 (2003) [arXiv:nucl-th/0301042].

    Google Scholar 

  47. T. Hirano and Y. Nara, Phys. Rev. C 68, 064902 (2003) [arXiv:nucl-th/0307087].

    Google Scholar 

  48. T. Hirano and Y. Nara, arXiv:nucl-th/0307015.

    Google Scholar 

  49. D. Molnar and M. Gyulassy, Nucl. Phys. A 697, 495 (2002)

    Google Scholar 

  50. D. Molnar and M. Gyulassy, [Erratum-ibid. A 703, 893 (2002)] [arXiv:nucl-th/0104073].

    Google Scholar 

  51. B. Zhang, M. Gyulassy and C. M. Ko, Phys. Lett. B 455, 45 (1999) [arXiv:nucl-th/9902016].

    Google Scholar 

  52. S. A. Bass and A. Dumitru, Phys. Rev. C 61, 064909 (2000) [arXiv:nucl-th/0001033].

    Google Scholar 

  53. P. Braun-Munzinger, K. Redlich and J. Stachel, arXiv:nucl-th/0304013.

    Google Scholar 

  54. I. G. Bearden et al. [BRAHMS Collaboration], Phys. Rev. Lett. 88, 202301 (2002) [arXiv: nucl-ex/0112001].

    Google Scholar 

  55. G. Agakichiev et al. [CERES/NA45 Collaboration], arXiv:nucl-ex/0303014.

    Google Scholar 

  56. P. Danielewicz, R. Lacey and W. G. Lynch, Science 298, 1592 (2002) [arXiv:nuclth/0208016].

    Google Scholar 

  57. G. Policastro, D. T. Son and A. O. Starinets, JHEP 0212, 054 (2002) [arXiv:hepth/0210220]. A. Buchel and J. T. Liu, arXiv:hep-th/0311175.

    Google Scholar 

  58. P. Danielewicz and M. Gyulassy, Phys. Rev. D 31 (1985) 53.

    Article  ADS  Google Scholar 

  59. K. Adcox et al., Phys. Rev. Lett. 88, 022301 (2002)

    Google Scholar 

  60. P. Levai et al., Nucl. Phys. A 698, 631 (2002).

    Google Scholar 

  61. K. Adcox et al. [PHENIX Collaboration], Phys. Lett. B 561, 82 (2003) [arXiv:nuclex/0207009].

    Google Scholar 

  62. S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. Lett. 91,072301 (2003) [arXiv:nuclex/0304022].

    Google Scholar 

  63. J. Adams et al. [STAR Collaboration], arXiv:nucl-ex/0305015.

    Google Scholar 

  64. C. Adler et al., [STAR Collaboration] Phys. Rev. Lett. 89, 202301 (2002) [arXiv:nuclex/0206011].

    Google Scholar 

  65. P. Jacobs and J. Klay [STAR Collaboration], arXiv:nucl-ex/0308023.

    Google Scholar 

  66. C. Adler et al. [STAR Collaboration], Phys. Rev. Lett. 90, 082302 (2003) [arXiv:nuclex/0210033].

    Google Scholar 

  67. D. Hardtke [The STAR Collaboration], Nucl. Phys. A 715, 272 (2003) [arXiv:nuclex/0212004].

    Google Scholar 

  68. C. Adler et al. [STAR Collaboration], Phys. Rev. Lett. 90, 032301 (2003).

    Google Scholar 

  69. D. d’Enterria [PHENIX Collaboration], arXiv:nucl-ex/0401001.

    Google Scholar 

  70. J. D. Bjorken, FERMILAB-PUB-82–059-THY and erratum (unpublished); M. H. Thoma and M. Gyulassy, Nucl. Phys. B 351,491 (1991);

    Google Scholar 

  71. E. Braaten and M. H. Thoma, Phys. Rev. D 44,2625 (1991);

    Google Scholar 

  72. M. H. Thoma, J. Phys. G 26,1507 (2000) [arXiv:hep-ph/0003016].

    Google Scholar 

  73. M. Gyulassy, P. Levai, and I. Vitev, Phys. Lett. B 538, 282 (2002)

    Google Scholar 

  74. E. Wang and X.-N. Wang, Phys. Rev. Lett. 89, 162301 (2002)

    Google Scholar 

  75. C. A. Salgado and U. A. Wiedemann, Phys. Rev. Lett. 89, 092303 (2002);

    Google Scholar 

  76. I. Vitev and M. Gyulassy, Phys. Rev. Lett. 89, 252301 (2002) [arXiv:hep-ph/0209161].

    Google Scholar 

  77. M. Gyulassy, P. Levai and I. Vitev, Nucl. Phys. B 594,371 (2001) [arXiv:nucl-th/0006010]

    Google Scholar 

  78. M. Gyulassy, P. Levai and I. Vitev, Phys. Rev. Lett. 85, 5535 (2000) [arXiv:nucl-th/0005032];

    Google Scholar 

  79. M. Gyulassy, P. Levai and I. Vitev, Nucl. Phys. B 571, 197 (2000) [arXiv:hep-ph/9907461].

    Google Scholar 

  80. V. Topor Pop et al., Phys. Rev. C 68, 054902 (2003) [arXiv:nucl-th/0209089].

    Google Scholar 

  81. X. N. Wang and M. Gyulassy, Phys. Rev. D 44, 3501 (1991).

    Google Scholar 

  82. M. Gyulassy, I. Vitev and X. N. Wang, Phys. Rev. Lett. 86, 2537 (2001) [arXiv:nuclth/0012092].

    Google Scholar 

  83. M. Gyulassy, I. Vitev, X. N. Wang and P. Huovinen, Phys. Lett. B 526, 301 (2002) [arXiv:nucl-th/0109063].

    Google Scholar 

  84. M. Gyulassy, CIPANP Conference seminar, May 21, 2003, http://www.phenix.bnl.gov/WWW/publish/nagle/CIPANP/

  85. A. Adil, M. Gyulassy, I. Vitev, to be published.

    Google Scholar 

  86. X. N. Wang, arXiv:nucl-th/0305010.

    Google Scholar 

  87. X. N. Wang, Phys. Lett. B 579, 299 (2004) [arXiv:nucl-th/0307036].

    Google Scholar 

  88. S.S. Adler et al. [PHENIX Collaboration], Phys. Rev. Lett. 91, 072303 (2003) [arXiv:nuclex/0306021].

    Google Scholar 

  89. J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 91, 072304 (2003) [arXiv:nuclex/0306024].

    Google Scholar 

  90. I. Arsene et al. [BRAHMS Collaboration], Phys. Rev. Lett. 91, 072305 (2003) [arXiv:nuclex/0307003].

    Google Scholar 

  91. B. B. Back et al. [PHOBOS Collaboration], Phys. Rev. Lett. 91, 072302 (2003) [arXiv: nucl-ex/0306025].

    Google Scholar 

  92. Y. L. Dokshitzer and D. E. Kharzeev, Phys. Lett. B 519, 199 (2001) [arXiv:hepph/0106202].

    Google Scholar 

  93. M. Djordjevic and M. Gyulassy, Nucl. Phys. A 733,265 (2004) [arXiv:nucl-th/0310076].

    Google Scholar 

  94. S. Batsouli, S. Kelly, M. Gyulassy and J. L. Nagle, Phys. Lett. B 557,26 (2003) [arXiv:nuclth/0212068].

    Google Scholar 

  95. Transverse Dynamics at RHIC, BNL March 6–8, 2003, http://www.phenix.bnl.gov/phenix/WWW/publish/rak/workshop/int/program TD.htm

  96. X. N. Wang, Phys. Rev. C 61, 064910 (2000) [arXiv:nucl-th/9812021].

    Google Scholar 

  97. X. N. Wang, Phys. Rept. 280, 287 (1997) [arXiv:hep-ph/9605214].

    Google Scholar 

  98. I. Vitev, Phys. Lett. B 562, 36 (2003) [arXiv:nucl-th/0302002]; A. Accardi and M. Gyulassy, arXiv:nucl-th/0308029; P. Levai, G. Papp, G. G. Barnafoldi and G. I. Fai, arXiv:nuclth/0306019.

    Google Scholar 

  99. D. Kharzeev, E. Levin and L. McLerran, Phys. Lett. B 561, 93 (2003) [arXiv:hepph/0210332].

    Google Scholar 

  100. J. W. Qiu and I. Vitev, arXiv:hep-ph/0309094; arXiv:hep-ph/0401062.

    Google Scholar 

  101. S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998) [arXiv:nucl-th/9803035].

    Google Scholar 

  102. V. R. Zoller, arXiv:hep-ph/0306038.

    Google Scholar 

  103. J. W. Qiu and I. Vitev, Phys. Lett. B 570, 161 (2003) [arXiv:nucl-th/0306039]; I. Vitev, arXiv:nucl-th/0308028.

    Google Scholar 

  104. M. Gyulassy, P. Levai and I. Vitev, Phys. Rev. D 66, 014005 (2002) [arXiv:nuclth/0201078].

    Google Scholar 

  105. S. S. Adler et al. [PHENIX Collaboration], arXiv:nucl-ex/0307022.

    Google Scholar 

  106. S. Soff, S. A. Bass and A. Dumitru, Phys. Rev. Lett. 86, 3981 (2001) [arXiv:nuclth/0012085].

    Google Scholar 

  107. Z. W. Lin, C. M. Ko and S. Pal, Phys. Rev. Lett. 89, 152301 (2002) [arXiv:nuclth/0204054].

    Google Scholar 

  108. D. Kharzeev, Phys. Lett. B 378, 238 (1996) [arXiv:nucl-th/9602027].

    Google Scholar 

  109. S. E. Vance et al, Phys. Lett. B 443, 45 (1998) [arXiv:nucl-th/9806008].

    Google Scholar 

  110. I. Vitev and M. Gyulassy, Phys. Rev. C 65, 041902 (2002) [arXiv:nucl-th/0104066].

    Google Scholar 

  111. P. Csizmadia, et al J. Phys. G 25, 321 (1999) [arXiv:hep-ph/9809456].

    Google Scholar 

  112. R. J. Fries, B. Muller, C. Nonaka and S. A. Bass, Phys. Rev. Lett. 90, 202303 (2003) [arXiv:nuclth/0301087].

    Google Scholar 

  113. D. Molnar and S. A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003) [arXiv:nucl-th/0302014].

    Google Scholar 

  114. V. Greco, C. M. Ko and P. Levai, Phys. Rev. C 68, 034904 (2003) [arXiv:nucl-th/0305024].

    Google Scholar 

  115. Z. W. Lin and D. Molnar, Phys. Rev. C 68, 044901 (2003) [arXiv:nucl-th/0304045].

    Google Scholar 

  116. F. Gelis, Nucl. Phys. A 715, 329 (2003) [arXiv:hep-ph/0209072].

    Google Scholar 

  117. X. N. Wang, Z. Huang and I. Sarcevic, Phys. Rev. Lett. 77, 231 (1996) [arXiv:hepph/9605213].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gyulassy, M. (2004). The QGP Discovered at RHIC. In: Greiner, W., Itkis, M.G., Reinhardt, J., Güçlü, M.C. (eds) Structure and Dynamics of Elementary Matter. NATO Science Series, vol 166. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2705-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2705-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2446-7

  • Online ISBN: 978-1-4020-2705-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics