Skip to main content

Supertree Methods for Ancestral Divergence Dates and other Applications

  • Chapter
Phylogenetic Supertrees

Part of the book series: Computational Biology ((COBO,volume 4))

Abstract

There are many ways to combine rooted phylogenetic trees with overlapping leaf sets into a single “supertree”. The most widely used method is MRP (matrix representation with parsimony analysis), but other direct methods have been developed recently. However, all these methods utilize typically only the discrete topology of the input trees and ignore other information that might be available. Based, for example, on fossil data or molecular dating techniques, this information includes whether one particular divergence event occurred earlier or later than another, and actual time estimates for divergence events. The ability to include such information in supertree construction could allow for more accurate dating of certain species divergences. This is a topical problem in recent biological literature. In this chapter, we describe a way to incorporate divergence time information in a fast and exact supertree algorithm that extends the classic Build algorithm. The approach is somewhat flexible in that it allows any combination of relative and/or absolute divergence times. In addition to this extension, the last section of this chapter consists of applications of Build to problems in phylogenetics that are, in general, computationally challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aho, A. V., Sagiv, Y., Szymanski, T. G., and Ullman, J. D. 1981. Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. Siam Journal on Computing 10:405–421.

    Article  Google Scholar 

  • Barthélemy, J.-P. and Guénoche, A. 1991. Trees and Proximity Representations. John Wiley and Sons, United Kingdom.

    Google Scholar 

  • Baum, B. R. 1992. Combining trees as a way of combining datasets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41:3–10.

    Article  Google Scholar 

  • Benham, C., Kannan, S., Paterson, M., and Warnow, T. 1995. Hen ’s teeth and whale ’s feet: generalized characters and their compatibility. Journal of Computational Biology 2:515–525.

    Article  PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P. and Bryant H. N. 1998. Properties of matrix representation with parsimony analyses. Systematic Biology 47:497–508.

    PubMed  CAS  Google Scholar 

  • Bodlaender, H. L., Fellows, M. R., and Warnow, T. J. 1992. Two strikes against perfect phylogeny. In Proceedings of the International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, volume 623, pp. 273–283. SpringerVerlag, Berlin.

    Chapter  Google Scholar 

  • Bryant, D. and Steel, M. 1995. Extension operations on sets of leaf-labelled trees. Advances in Applied Mathematics 16:425--453.

    Article  Google Scholar 

  • Constantinescu, M. and Sankoff, D. 1995. An efficient algorithm for supertrees. Journal of Classification 12:101–112.

    Article  Google Scholar 

  • Farach, M., Kannan, S., and Warnow, T. 1995. A robust model for finding optimal evolutionary trees. Algorithmica 13:155–179.

    Article  Google Scholar 

  • Golumbic, M. C. 1980. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York.

    Google Scholar 

  • Henzinger, M. R., King, V., and Warnow, T. 1999. Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica, 24:1–13.

    Article  Google Scholar 

  • McMorris, F. R., Warnow, T. J., and Wimer, T. 1994. Triangulating vertex-colored graphs. Siam Journal on Discrete Mathematics 7:296–306.

    Article  Google Scholar 

  • Ng, M. P. and Wormald, N. C. 1996. Reconstruction of rooted trees from subtrees. Discrete Applied Mathematics, 69:19–31.

    Article  Google Scholar 

  • Page, R. D. M. 2002. Modified mincut supertrees. In R. Guigó and D. Gusfield (eds), Proceedings of the Second International Workshop on Algorithms in Bioinformatics Wabi2002, pp. 537–552, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Peer, I., Shamir, R., and Sharan, R. 2000. Incomplete directed perfect phylogeny. In D. Sankoff (ed.), Proceedings of the Eleventh Symposium on Combinatorial Pattern Matching Cpm, Lecture Notes in Computer Science 1848:143–153. Springer, New York.

    Chapter  Google Scholar 

  • Piaggio-Talice, R., Burleigh, J. G., and Eulenstein, E. 2004. Quartet supertrees. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 173–191. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Ragan, M. A. 1992. Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution 1:53–58.

    Article  PubMed  CAS  Google Scholar 

  • Semple, C. 2003. Reconstructing minimal rooted trees. Discrete Applied Mathematics 127:489–503.

    Article  Google Scholar 

  • Semple, C. and Steel, M. 2000. A supertree method for rooted trees. Discrete Applied Mathematics 105:147–158.

    Article  Google Scholar 

  • Semple, C. and Steel, M. 2002. Tree reconstruction from multi-state characters. Advances in Applied Mathematics 28:169–184.

    Article  Google Scholar 

  • Semple, C. and Steel, M. 2003. Phylogenetics. Oxford University Press, Oxford.

    Google Scholar 

  • Steel, M. 1992. The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9:91–116.

    Article  Google Scholar 

  • Strimmer, K. and Von Haeseler, A. 1996. Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Molecular Biology and Evolution 13:964–969.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bryant, D., Semple, C., Steel, M. (2004). Supertree Methods for Ancestral Divergence Dates and other Applications. In: Bininda-Emonds, O.R.P. (eds) Phylogenetic Supertrees. Computational Biology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2330-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2330-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2329-3

  • Online ISBN: 978-1-4020-2330-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics