Skip to main content

Abstract

The correction of uremic metabolic acidosis has always represented one of fundamental aims of renal replacement therapies. Since the earliest experiences (1, 2) bicarbonate has been enclosed in the dialysis fluid in order to provide a source of base for patients without functioning kidneys. Poor bicarbonate solubility when mixed with divalent cations (calcium and magnesium) and easy bacterial contamination of dialysis fluid suggested a change in the buffer species and acetate was used instead of bicarbonate both in hemodialysis and peritoneal dialysis (3, 4). Acetate-containing solutions were easily prepared, chemically stable and microbiologically safe, thus becoming the first choice substance for acid-base derangement correction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kolff WJ. Le rein artificiel: un dialyseur a grande surface. Presse Med. 1944;52:103–21.

    Google Scholar 

  2. Scribner BH, Caner JEZ, Buri R. The technique of continuous hemodialysis. Trans Am Soc Artif Intern Organs. 1960;6:88–92.

    PubMed  CAS  Google Scholar 

  3. Mion CM, Hegstrom RM, Boen ST, Scribner BH. Substitution of sodium acetate for sodium bicarbonate in the bath fluid for hemodialysis. Trans Am Soc Artif Intern Organs. 1964;10:110–13.

    PubMed  CAS  Google Scholar 

  4. Boen ST. History of peritoneal dialysis. In: Nolph KD, editor. Peritoneal Dialysis. Dordrecht: Kluwer, 1989:1–12.

    Chapter  Google Scholar 

  5. Tolchin N, Roberts JL, Hayashi J, Lewis EJ. Metabolic consequences of high mass-transfer hemodialysis. Kidney Int. 1977;11:366–78.

    Article  PubMed  CAS  Google Scholar 

  6. Gennari, FJ. Acid—base homeostasis in end-stage renal disease. Semin Dial. 1996;9:404–11.

    Article  Google Scholar 

  7. Widmer B, Gerhardt RE, Harringon JT, Cohen JJ. Serum electrolyte and acid—base composition: the influence of graded degrees of chronic renal failure. Arch Intern Med. 1979;139:1099–102.

    Article  PubMed  CAS  Google Scholar 

  8. Litzow JR, Lemann J, Lennon EJ. The effect of treatment of acidosis on calcium balance in patients with chronic azotemic renal disease. J Clin Invest. 1967;46:280–6.

    Article  PubMed  CAS  Google Scholar 

  9. Uribarri J, Douyon H, Oh MS. A re-evaluation of the urinary parameters of acid production and excretion in patients with chronic renal acidosis. Kidney Int. 1995; 47:624–7.

    Article  PubMed  CAS  Google Scholar 

  10. Schwartz WB, Hall PW, Hays RM, Relman AS. On the mechanism of acidosis in chronic renal disease. J Clin Invest. 1959;38:39–45.

    Article  PubMed  CAS  Google Scholar 

  11. Marsiglia JC, Cingolani HE, Gonzales NC. Relevance of beta receptor blockade to the negative inotropic effect induced by metabolic acidosis. Cardiovasc Res. 1973;7:336–43.

    Article  PubMed  CAS  Google Scholar 

  12. Harrington JT, Cohen JJ. Metabolic acidosis. In: Cohen JJ, Kassirer JP, editors. Acid Base. Boston: Little, Brown, 1982:121–225.

    Google Scholar 

  13. Fantuzzi S, Caico S, Amatruda O et al. Hemodialysisassociated cardiac arrhythmias: a lower risk with bicarbonate? Nephron. 1991;58:196–200.

    Article  PubMed  CAS  Google Scholar 

  14. Oh MS. Irrelevance of bone buffering to acid-base homeostasis in chronic metabolic acidosis. Nephron. 1991;59:7–10.

    Article  PubMed  CAS  Google Scholar 

  15. Lemann J, Litzow JR, Lennon EJ. The effects of chronic acid loads in normal man: further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis. J Clin Invest. 1966;45:1608–14.

    Article  PubMed  CAS  Google Scholar 

  16. Barzel US, Jowsey J. The effects of chronic acid and alkali administration on bone turnover in adult rats. Clin Sci. 1969;36:517–21.

    PubMed  CAS  Google Scholar 

  17. Goldhaber P, Rabadjija L. H+ stimulation of cell-mediated bone resorption in tissue culture. Am J Physiol. 1987;253: E90–8.

    PubMed  CAS  Google Scholar 

  18. Bushinsky DA, Lechleider RJ. Mechanism of protoninduced bone calcium release: calcium carbonate dissolution. Am J Physiol. 1987;253:F998–1005.

    PubMed  CAS  Google Scholar 

  19. Krieger NS, Sessler NE, Bushinsky DA. Acidosis inhibits osteoblastic and stimulates osteoclastic activity in vitro Am J Physiol. 1992;262:F442–8.

    PubMed  CAS  Google Scholar 

  20. Bushinsky DA, Sessler NE, Krieger NS. Greater unidirectional calcium efflux from bone during metabolic, compared with respiratory, acidosis. Am J Physiol. 1992;262:F425–31.

    PubMed  CAS  Google Scholar 

  21. Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris RC Jr. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med. 1994;330:1776–81.

    Article  PubMed  CAS  Google Scholar 

  22. Kraut JA. Disturbances of acid-base balance and bone disease in end-stage renal disease. Semin Dial. 2000;13:261–6.

    Article  PubMed  CAS  Google Scholar 

  23. Bichara M, Mercier, Borensztein P, Paillard M. Acute metabolic acidosis enhances circulating parathyroid hormone, which contributes to the renal response against acidosis in the rat. J Clin Invest. 1990;86:430–43.

    Article  PubMed  CAS  Google Scholar 

  24. Lefebvre A, de Verneoul MC, Gueris J, Goldfarb B, Graulet AM, Morieux C. Optimal correction of acidosis changes progression of dialysis osteodystrophy. Kidney Int. 1989;36:1112–18.

    Article  PubMed  CAS  Google Scholar 

  25. Graham KA, Hoenich NA, Tarbit M, Ward MK, Goodship THJ. Correction of acidosis in hemodialysis patients increases the sensitivity of the parathyroid glands to calcium. J Am Soc Nephrol. 1997;8:627–31.

    PubMed  CAS  Google Scholar 

  26. Hutchison AJ, Freemont AJ, Boulton HF, Gokal R. Low calcium dialysis fluid and oral calcium carbonate in CAPD. A method of controlling hyperphosphatemia whilst minimizing aluminum exposure and hypercalcaemia. Nephrol Dial Transplant. 1992;7:1219–25.

    PubMed  CAS  Google Scholar 

  27. May RC, Kelly RA, Mitch WE. Mechanisms for defects in muscle protein metabolism in rats with chronic uremia: influence of metabolic acidosis. J Clin Invest. 1987;79:1099–103.

    Article  PubMed  CAS  Google Scholar 

  28. May RC, Kelly RA, Mitch WE. Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoiddependent mechanism. J Clin Invest. 1986;77:614–21.

    Article  PubMed  CAS  Google Scholar 

  29. Hara Y, May RC, Kelly RA, Mitch WE. Acidosis, not azotemia, stimulates branched-chain amino acid catabolism in uremic rats. Kidney Int. 1987;32:808–14.

    Article  PubMed  CAS  Google Scholar 

  30. Mitch WE, Clark AS. Specificity of the effects of leucine and its metabolites on protein degradation in skeletal muscle. Biochem J. 1984;222:579–86.

    PubMed  CAS  Google Scholar 

  31. Papadoyannakis NJ, Stefanidis CJ, McGeown M. The effect of the correction of metabolic acidosis on nitrogen and protein balance of patients with chronic renal failure. Am J Clin Nutr. 1984;40:623–7.

    PubMed  CAS  Google Scholar 

  32. Reaich D, Channon SM, Scrimgeour CM, Daley SE, Wilkinson R, Goodship THJ. Correction of acidosis in humans with CRF decreases protein degradation and amino acid oxidation. Am J Physiol. 1993;265:E230–5.

    PubMed  CAS  Google Scholar 

  33. Jenkins D, Burton PR, Bennet SE, Baker F, Walls J. The metabolic consequences of the correction of acidosis in uraemia. Nephrol Dial Transplant. 1989;4:92–5.

    PubMed  CAS  Google Scholar 

  34. Williams B, Hattersley J, Layward E, Walls J. Metabolic acidosis and skeletal muscle adaptation to low protein diets in chronic uremia. Kidney Int. 1991;40:779–86.

    Article  PubMed  CAS  Google Scholar 

  35. Bergström J, Alvestrand A, Fürst P. Plasma and muscle free amino acids in maintenance hemodialysis patients without protein malnutrition. Kidney Int. 1990;38:108–14.

    Article  PubMed  Google Scholar 

  36. Garibotto G, Russo R, Sofia A et al. Skeletal muscle protein synthesis and degradation in patients with chronic renal failure. Kidney Int. 1994;45:1432–9.

    Article  PubMed  CAS  Google Scholar 

  37. Ballmer PE, McNurlan MA, Hulter HN, Anderson SE, Garlick PJ, Krapf R. Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans. J Clin Invest. 1995;95:39–45.

    Article  PubMed  CAS  Google Scholar 

  38. Fukagawa NK, Minaker KL, Rowe JW et al. Insulinmediated reduction of whole body protein breakdown. Doseresponse effects on leucine metabolism in postabsorptive men. J Clin Invest. 1985;76:2306–11.

    Article  PubMed  CAS  Google Scholar 

  39. Defronzo RA, Beckles AD. Glucose intolerance following chronic metabolic acidosis in man. Am J Physiol. 1979;236: E328–34.

    PubMed  CAS  Google Scholar 

  40. Defronzo RA, Alvestrand A, Smith D, Hendler R, Hendler E, Wahren J. Insulin resistance in uremia. J Clin Invest. 1981;67:563–8.

    Article  PubMed  CAS  Google Scholar 

  41. Mitch WE, Price SR, May RC, Jurkovitz C, England BK. Metabolic consequences of uremia: extending the concept of adaptive responses to protein metabolism. Am J Kidney Dis. 1994;23:224–8.

    PubMed  CAS  Google Scholar 

  42. Stein A, Baker F, Larratt C et al. Correction of metabolic acidosis and protein catabolic rate in PD patients. Perit Dial Int. 1994;14:187–9.

    PubMed  CAS  Google Scholar 

  43. Graham KA, Reaich D, Channon SM et al. Correction of acidosis in hemodialysis decreases whole-body protein degradation. J Am Soc Nephrol. 1997;8:632–7.

    PubMed  CAS  Google Scholar 

  44. Graham KA, Reaich D, Channon SM et al. Correction of acidosis in CAPD decreases whole-body protein degradation. Kidney Int. 1996;49:1396–400.

    Article  PubMed  CAS  Google Scholar 

  45. Brady JP, Hasbargen JA. Correction of metabolic acidosis and its effect on albumin in chronic hemodialysis patients. Am J Kidney Dis. 1998;31:35–40.

    Article  PubMed  CAS  Google Scholar 

  46. Williams A, Dittmer I, McArley A, Clarke J. High bicarbonate dialysate in hemodialysis patients: effect on acidosis and nutritional status. Nephrol Dial Transplant. 1997;12: 2633–7.

    Article  PubMed  CAS  Google Scholar 

  47. Gennari FJ, Cohen JJ, Kassirer JP. Normal acid-base values. In: Cohen JJ, Kassirer JP, editors. Acid/Base. Boston: Little, Brown, 1982:107–10.

    Google Scholar 

  48. Stein A, Moorhouse J, Iles-Smith H et al. Role of an improvement in acid-base status and nutrition in CAPD patients. Kidney Int. 1997;52:1089–95.

    Article  PubMed  CAS  Google Scholar 

  49. Uribarri J, Levin NW, Delmez J et al. Association of acidosis and nutritional parameters in hemodialysis patients. Am J Kidney Dis. 1999;34:493–9.

    Article  PubMed  CAS  Google Scholar 

  50. Bastani B, McNeely M, Schmitz PG. Serum bicarbonate is an independent determinant of protein catabolic rate in chronic hemodialysis. Am J Nephrol. 1996;16:382–5.

    Article  PubMed  CAS  Google Scholar 

  51. Movillli E, Bossini N, Viola BF et al. Evidence for an independent role of metabolic acidosis on nutritional status in hemodialysis patients. Nephrol Dial Transplant. 1998;13: 674–8.

    Article  Google Scholar 

  52. Movilli E, Zani R, Carli O et al. Correction of metabolic acidosis increases serum albumin concentrations and decreases kinetically evaluated protein intake in hemodialysis patients: a prospective study. Nephrol Dial Transplant. 1998;13:1719–22.

    Article  PubMed  CAS  Google Scholar 

  53. Ledebo I. Acid-base correction and convective dialysis therapies. Nephrol Dial Transplant. 2000;15(Suppl. 2):45–8.

    Article  PubMed  CAS  Google Scholar 

  54. Lowrie EG, Lew NL. Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis. 1990;15:458–82.

    PubMed  CAS  Google Scholar 

  55. Lennon EJ, Lemann J Jr, Litzow JR. The effects of diet and stool composition on the net external acid balance of normal subjects. J Clin Invest. 1966;45:1601–7.

    Article  PubMed  CAS  Google Scholar 

  56. Gotch FA, Sargent JA, Keen ML. Hydrogen ion balance in dialysis therapy. Artif Organs. 1982;6:388–95.

    Article  PubMed  CAS  Google Scholar 

  57. Oh MS. New perspectives on acid-base balance. Semin Dial. 2000;13:212–19.

    Article  PubMed  CAS  Google Scholar 

  58. Oh MS. A new method for estimating GI absorption of alkali. Kidney Int. 1989;36:915–17.

    Article  PubMed  CAS  Google Scholar 

  59. Uribarri J, Buquing J, Oh MS. Acid-base balance in chronic peritoneal dialysis patients. Kidney Int. 1995;47:269–73.

    Article  PubMed  CAS  Google Scholar 

  60. Uribarri J, Zia M, Mahmood J, Marcus RA, Oh MS. Acid production in chronic hemodialysis patients. J Am Soc Nephrol. 1998;9:114–20.

    PubMed  CAS  Google Scholar 

  61. Uribarri J. Acidosis in chronic renal insufficiency. Semin Dial. 2000;13:232–4.

    Article  PubMed  CAS  Google Scholar 

  62. Fernandez PC, Cohen RM, Feldman GM. The concept of bicarbonate distribution space: the crucial role of body buffers. Kidney Int. 1989;36:747–52.

    Article  PubMed  CAS  Google Scholar 

  63. Garella S, Dana CL, Chazan JA. Severity of metabolic acidosis as a determinant of bicarbonate requirements. N Engl J Med. 1973;289:121–6.

    Article  PubMed  CAS  Google Scholar 

  64. Androguè HJ, Brensilver J, Cohen JJ, Madias NE. Influence of steady-state alterations in acid-base equilibrium on the fate of administered bicarbonate in the dog. J Clin Invest. 1983;71:867–83.

    Article  Google Scholar 

  65. Pacitti A, Atti M, Alloatti A et al. Computer modeled bicarbonate kinetic in acetate free biofiltration. In: Man NR, Botella J, Zucchelli P, editors. Blood Purification in Perspective: New Insights and Future Trends, Vol. 2. Cleveland: Icaot Press, 1992:191–7.

    Google Scholar 

  66. Gennari FJ. Acid-base balance in dialysis patients. Kidney Int. 1985;28:678–88.

    Article  PubMed  CAS  Google Scholar 

  67. Hakim RM, Pontzer M, Tilton D, Lazarus JM, Gottlieb MN. Effects of acetate and bicarbonate dialysate in stable chronic dialysis patients. Kidney Int. 1985;28:535–40.

    Article  PubMed  CAS  Google Scholar 

  68. Man NK, Fournier G, Thireau P, Gaillard JL, Funck Brentano JL. Effect of bicarbonate-containing dialysate on chronic hemodialysis patients: a comparative study. Artif Organs. 1982;6:421–5.

    Article  PubMed  CAS  Google Scholar 

  69. Ward RA, Wathen RL, Williams TE. Effects of long-term bicarbonate hemodialysis on acid-base status. Trans Am Soc Artif Intern Organs. 1982;28:295–8.

    PubMed  CAS  Google Scholar 

  70. Symreng T, Flanigan MJ, Lim VS. Ventilatory and metabolic changes during high efficiency hemodialysis. Kidney Int. 1992;41:1064–9.

    Article  PubMed  CAS  Google Scholar 

  71. Ward RA, Wathen RL, Williams TE, Harding GB. Hemodialysate composition and intradialytic metabolic, acid-base and potassium changes. Kidney Int. 1987;32:129–35.

    Article  PubMed  CAS  Google Scholar 

  72. Henrich WL, Woodard TD, Meyer BD, Chappell TR, Rubin LJ. High sodium bicarbonate and acetate hemodialysis: double blind crossover comparison of hemodynamic and ventilatory effects. Kidney Int. 1983;24:240–5.

    Article  PubMed  CAS  Google Scholar 

  73. Singer RB, Clark JK, Barker ES, Crosley AP, Elkinton JR. The acute effects in man of rapid intravenous infusion of hypertonic sodium bicarbonate solution. I. Changes in acid-base balance and the distribution of the excess buffer base. Medicine. 1955;34:51–95.

    Article  PubMed  CAS  Google Scholar 

  74. Vreman HJ, Assomull VM, Kaiser BA, Blaschke TF, Weiner MW. Acetate metabolism and acid-base homeostasis during hemodialysis: influence of dialyzer efficiency and rate of acetate metabolism. Kidney Int. 1980;18(Suppl. 10): S62–74.

    Google Scholar 

  75. La Greca G, Feriani M, Bragantini L, Petrosino L, Santoro A, Altieri P. Effects of acetate and bicarbonate dialysate on vascular stability: a prospective multicentric study. Int J Artif Organs. 1987;10:157–62.

    PubMed  Google Scholar 

  76. Oettinger CW, Oliver JC. Normalization of uremic acidosis in hemodialysis patients with a high bicarbonate dialysate. J Am Soc Nephrol. 1993;3:1804–7.

    PubMed  CAS  Google Scholar 

  77. Thews O. Model-based decision support system for individual prescription of the dialysate bicarbonate concentration in hemodialysis. Int J Artif Organs. 1992;15:447–55.

    PubMed  CAS  Google Scholar 

  78. Fabris A, LaGreca G, Chiaramonte S et al. The importance of ultrafiltration on acid-base status in a dialysis population. Trans Am Soc Artif Intern Organs. 1988;34:200–1.

    CAS  Google Scholar 

  79. Van Stone JC. Oral base replacement in patients on hemodialysis. Ann Intern Med. 1984;101:199–201.

    Article  PubMed  Google Scholar 

  80. Kveim M, Nesbakken R. Utilisation of exogenous acetate during hemodialysis. Trans Am Soc Artif Intern Organs. 1975;21:138–43.

    PubMed  CAS  Google Scholar 

  81. Kaiser BA, Potter DE, Bryant RE, Vreman HJ, Weiner MW. Acid-base changes and acetate metabolism during routine and high efficiency hemodialysis in children. Kidney Int. 1981;19:70–9.

    Article  PubMed  CAS  Google Scholar 

  82. Graefe U, Milutinovich J, Follette WC, Vizzo JE, Babb AL, Scribner BH. Less dialysis-induced morbidity and vascular instability with bicarbonate in dialysate. Ann Intern Med. 1978;88:332–6.

    Article  PubMed  CAS  Google Scholar 

  83. Henderson LW, Koch KM, Dinarello CA, Shaldon S. Hemodialysis hypotension: the interleukin hypothesis. Blood Purif. 1983;1:3–8.

    Article  CAS  Google Scholar 

  84. Colton CK. Analysis of membrane process for blood purification. Blood Purif. 1987;5:202–51.

    Article  PubMed  CAS  Google Scholar 

  85. Shaldon S, Deschodt G, Branger B et al. Hemodialysis hypotension: the interleukin hypotesis restated. Proc Eur Dial Transplant Assoc. 1985;22:229–43.

    Google Scholar 

  86. Dodd NJ, Parson V, Weston MJ. Leukocyte occlusion of cuprophane membrane as a cause of reduced hemodialysis efficiency. Int J Artif Organs. 1982;5:275.

    PubMed  CAS  Google Scholar 

  87. Koch KM, Shaldon S, Baldamus CA et al. Convective mass transport in dialysis. Proc Eur Dial Transplant Assoc. 1985; 22:467–71.

    Google Scholar 

  88. Bingel M, Koch KM, Dinarello CA, Shaldon S. Human interleukin-1 production is enhanced by sodium acetate. Lancet. 1987;1:14–16.

    Article  PubMed  CAS  Google Scholar 

  89. Dolan MJ, Whipp BJ, Davidson WD, Weitzman RE, Wasserman K. Hypopnea associated with acetate hemodialysis: carbon dioxide-flow-dependent ventilation. N Engl J Med. 1981;305:72–5.

    Article  PubMed  CAS  Google Scholar 

  90. Hunt JM, Chappell TR, Henrich WL, Rubin. Gas exchange during dialysis. Am J Med. 1984;77:255–60.

    Article  PubMed  CAS  Google Scholar 

  91. Vinay P, Prud’homme M, Vinet B et al. Acetate metabolism and bicarbonate generation during hemodialysis: 10 years of observation. Kidney Int. 1987;31:1194–204.

    Article  PubMed  CAS  Google Scholar 

  92. Bosch JP, Lauer A. Acid-base balance in hemofiltration. In: Henderson LW, Quellhorst EA, Baldamus CA, Lysaght MJ, editors. Hemofiltration. Berlin: Springer Verlag, 1986: 147–54.

    Google Scholar 

  93. Schaefer K, Ryzlewicz T, Sandri M, von Bernewitz S, von Herrath D. Effect of hemofiltration on acid-base status and ventilation. Contrib Nephrol. 1982;32:69–78.

    PubMed  CAS  Google Scholar 

  94. Kishimoto T, Yamamoto T, Yamamoto K et al. Acetate kinetics during hemodialysis and hemofiltration. Blood Purif. 1984;2:81–7.

    Article  Google Scholar 

  95. Feriani M, Biasioli S, Fabris A et al. Calcium and bicarbonate containing solutions for peritoneal dialysis and hemofiltration. In: Nos š Y, Kjellstrand C, Ivanovich P, editors. Progress in Artificial Organs. Cleveland: ISAO Press, 1986:277–81.

    Google Scholar 

  96. Santoro A, Ferrari G, Bolzani R, Spongano M, Zucchelli P. Int J Artif Organs. 1994;17:27–36.

    PubMed  CAS  Google Scholar 

  97. Altieri P, Sorba GB, Bolasco PG et al. On-line predilution hemofiltration versus ultrapure high flux hemodialysis: a multicenter prospective study in 23 patients. Blood Purif. 1997;15:169–81.

    Article  PubMed  CAS  Google Scholar 

  98. Altieri P, Sorba GB, Bolasco PG et al. Predilution hemofiltration — the second Sardinian multicentre study: comparison between hemofiltration and hemodialysis during identical Kt/V and session times in a long-term cross-over study. Nephrol Dial Transplant. 2001;16:1207–13.

    Article  PubMed  CAS  Google Scholar 

  99. Sargent JA, Gotch FA. Bicarbonate and carbon dioxide transport during hemodialysis. ASAIO J. 1979;2:61–72.

    Google Scholar 

  100. Leber HW, Wizemann V, Goubeand G, Rawer P, Schätterle G. Simultaneous hemofiltration/hemodialysis: an effective alternative to hemofiltration and conventional hemodialysis in the treatment of uremic patients. Clin Nephrol. 1978;9:115–21.

    PubMed  CAS  Google Scholar 

  101. Scheider H, Liornin E, Streicher E. Haemodynamic studies of diffusive and convective procedures using a polysulphone membrane. Contrib Nephrol. 1985;46:134–48.

    Google Scholar 

  102. Feriani M, Biasioli S, Bragantini L et al. Buffer balance in bicarbonate hemodiafiltration. Trans Am Soc Artif Intern Organs. 1986;32:422–6.

    Article  CAS  Google Scholar 

  103. Arisi L, Calderini C, David S, Manari A, Mancuso S, Cambi V. Acid-base balance in hypertonic hemodiafiltration. In: Petrella E, editor. Uremic Acidosis. Milan: Wichtig Editore, 1983:71–83.

    Google Scholar 

  104. Biasioli S, Feriani M, Chiaramonte S et al. Different buffers for hemodiafiltration: a controlled study. Int J Artif Organs. 1989;12:25–30.

    PubMed  CAS  Google Scholar 

  105. Feriani M, Ronco C, Biasioli S, Bragantini L, La Greca G. Effect of dialysate and substitution fluid buffer on buffer flux in hemodiafiltration. Kidney Int. 1990;39:711–17.

    Article  Google Scholar 

  106. Feriani M, Bragantini L, Dell’Aquila R et al. Buffer kinetics in biofiltration. Int J Artif Organs. 1986; 9(Suppl. 3):S1–9.

    Google Scholar 

  107. Bene B, Beruard M, Perrone B, Simon P. Simultaneous dialysis and filtration with buffer-free dialysate. Blood Purif. 1985;2:217 (abstract).

    Google Scholar 

  108. Santoro A, Ferrari G, Spongano M, Badiali F, Zucchelli P. Acetate-free biofiltration: a viable alternative to bicarbonate hemodialysis. Artif Organs. 1989;13:476–85.

    Article  PubMed  CAS  Google Scholar 

  109. Santoro A, Spongano M, Ferrari G et al. Analysis of the factors influencing bicarbonate balance during acetate-free biofiltration. Kidney Int. 1993;43(Suppl. 41):S184–7.

    Google Scholar 

  110. Feriani M, Bragantini L, Milan M et al. Bicarbonate kinetics in acetate-free biofiltration. In: Man NR, Botella J, Zucchelli P, editors. Blood Purification in Perspective: New Insights and Future Trends, Vol. 2. Cleveland: Icaot Press, 1992:164–4.

    Google Scholar 

  111. von Albertini B, Miller JH, Gardner PW, Shinaberger JH. High-flux hemodiafiltration: under six hours/week treatment. Trans Am Soc Artif Intern Organs. 1984;30: 227–31.

    Google Scholar 

  112. Ahrenholz P, Winkler RE, Ramlow W, Tiess M, Thews O. On-line hemodiafiltration with pre- and postdilution: impact on the acid-base status. Int J Artif Organs. 1998; 21:321–7.

    PubMed  CAS  Google Scholar 

  113. Pedrini LA, De Cristofaro CV, Pagliari B. Effects of the infusion mode on bicarbonate balance in on-line hemodiafiltration. Int J Artif Organs. 2002;25:100–6.

    PubMed  CAS  Google Scholar 

  114. Forni LG, Hilton PJ. Continuous hemofiltration in the treatment of acute renal failure. N Engl J Med. 1997;336: 1303–9.

    Article  PubMed  CAS  Google Scholar 

  115. Ronco C. Continuous renal replacement therapies for the treatment of acute renal failure in intensive care patients. Clin Nephrol. 1993;40:187–98.

    PubMed  CAS  Google Scholar 

  116. Feriani M, Dell’Aquila R. Acid-base balance and replacement solutions in continuous renal replacement therapies. Kidney Int. 1999;66:S156–9.

    Google Scholar 

  117. Raimondi F, Bianchi T, Emmi V. Use of continuous arteriovenous hemofiltration (CAVH) in lactic acidosis: a case report. In: La Greca G, Fabris A, Ronco C, editors. CAVH. Milan: Wichtig Editore, 1986:135–40.

    Google Scholar 

  118. Fabris A, Biasioli S, Chiaramonte S et al. Buffer metabolism in CAPD: relationship with respiratory dynamics. Trans Am Soc Artif Intern Organs. 1982;28:270–5.

    PubMed  CAS  Google Scholar 

  119. Feriani M. Buffers: bicarbonate, lactate and pyruvate. Kidney Int. 1996;50(Suppl. 56):S75–80.

    Google Scholar 

  120. Faller B, Marichal JF. Loss of ultrafiltration in CAPD a role for acetate. Perit Dial Bull. 1984:4:10–14.

    Google Scholar 

  121. Slingeneyer A, Mion C, Mourad G, Canaud B, Faller B, Beraud JJ. Progressive sclerosing peritonitis. A late and severe complication of maintenance peritoneal dialysis. Trans Am Soc Artif Intern Organs. 1983;29:633–6.

    PubMed  CAS  Google Scholar 

  122. La Greca G, Biasioli S, Chiaramonte S et al. Acid-base balance on peritoneal dialysis. Clin Nephrol. 1981;16:1–7.

    PubMed  Google Scholar 

  123. Pedersen FB, Ryttof N, Deleuran P, Dragsholt C, Kildeberg P. Acetate vs lactate in peritoneal dialysis solutions. Nephron. 1985;39:55–61.

    Article  PubMed  CAS  Google Scholar 

  124. Nolph KD, Prowant B, Serkes KD et al. Multicentric evaluation of a new peritoneal dialysis solution with a high lactate and low magnesium concentration. Perit Dial Bull. 1983;3:63–5.

    Google Scholar 

  125. Teehan BP, Schleifer CR, Reichard GA, Cupit MC, Sigler MH, Haff AC. Acid-base studies in continuous ambulatory peritoneal dialysis. In: Moncrief JW, Popovich RP, editors. CAPD Update. New York: Masson, 1981:95–102.

    Google Scholar 

  126. Richardson RMA, Roscoe JM. Bicarboante, L-lactate and D-lactate balance in intermittent peritoneal dialysis. Perit Dial Bull. 1986;6:178–85.

    Google Scholar 

  127. Feriani M, Biasioli S, Borin D, La Greca G. Bicarbonate buffer for CAPD solution. Trans ASAIO, 1985;31:668–75.

    CAS  Google Scholar 

  128. Feriani M, Ronco C, La Greca G. Acid-base balance with different CAPD solutions. Perit Dial Int. 1996;16(Suppl. 1): 5126–9.

    Google Scholar 

  129. Feriani M, Biasioli S, Borin D et al. Bicarbonate buffer for CAPD solution. Trans Am Soc Artif Intern Organs. 1985;31: 668–71.

    PubMed  CAS  Google Scholar 

  130. Yatzidis H. A new stable bicarbonate dialysis solution for peritoneal dialysis: preliminary report. Perit Dial Int. 1991; 11:224–7.

    PubMed  CAS  Google Scholar 

  131. Feriani M, Biasioli S, Barbacini S et al. Acid-base correction in bicarbonate CAPD patients. Adv Perit Dial. 1989;5: 191–4.

    PubMed  CAS  Google Scholar 

  132. Feriani M, Dissegna D, La Greca G, Passlick-Deetjen J. Short term clinical study with bicarbonate containing peritoneal dialysis solution. Perit Dial Int. 1993;13:296–301.

    PubMed  CAS  Google Scholar 

  133. Coles GA, Gokal R, Ogg C et al. A randomized controlled trial of a bicarbonate and a bicarbonate/lactate containing dialysis solution in CAPD. Perit Dial Int. 1997; 17:48–51.

    PubMed  CAS  Google Scholar 

  134. Feriani M, Kirchgessner J, La Greca G, Passlick-Deetjen J, and the Bicarbonate CAPD Cooperative Group. A randomized multicenter long-term clinical study comparing a bicarbonate buffered CAPD solution with the standard lactate buffered CAPD solution. Kidney Int. 1998;54: 1731–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Feriani, M., Fabris, A., Greca, G.L. (2004). Acid-base in dialysis. In: Hörl, W.H., Koch, K.M., Lindsay, R.M., Ronco, C., Winchester, J.F. (eds) Replacement of Renal Function by Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2275-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2275-3_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7012-1

  • Online ISBN: 978-1-4020-2275-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics