Skip to main content

Electrophysiology of GABA receptors in the vertebrate central nervous system

  • Chapter
IUPHAR 9th International Congress of Pharmacology London 1984
  • 106 Accesses

Abstract

The role of gamma aminobutyric acid (GABA) in synaptic transmission in the central nervous system (CNS) is more firmly established than for any other transmitter. In addition, virtually every neurone receives a strong GABAergic input. It has long been known that the ionic mechanism involved in the inhibitory action of GABA involves an increase in membrane conductance to chloride ions. This action is blocked by a number of relatively selective antagonists, such as bicuculline. A number of recent studies have provided new insight into the action of GABA. First, the introduction of two new biophysical techniques, fluctuation analysis (Barker, et al., 1982) and single-channel recording (Hamill, et al., 1983) have considerably advanced our understanding of the properties of GABA-activated chloride channels. Secondly, GABA may have actions which do not involve chloride ions and are resistant to the action of known GABA antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ALGER, B.E. (1984). Hippocampus: electrophysiological studies of epithelium activity in vitro. In Brain Slices. Dingledine, R. (ed.) pp. 155–193. New York: Plenum Press.

    Chapter  Google Scholar 

  • ALGER, B.E. & NICOLL, R.A. (1980). Epileptiform burst afterhyperpolarization: calcium-dependent potassium potential in hippocampal CAl pyramidal cells. Science, 210, 1122–1124.

    Article  PubMed  CAS  Google Scholar 

  • ALGER, B.E. & NICOLL, R.A. (1982a). Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro. J. Physiol., 328, 195–223.

    Google Scholar 

  • ALGER, B.E. & NICOLL, R.A. (1982b). Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J. Physiol., 328, 125–141.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • ALLAN, R.D., EVANS, R.H. & JOHNSTON, G.A.R. (1980). γ-Aminobutyric acid agonists: An in vitro comparison between depression of spinal synaptic activity and depolarization of spinal root fibres in the rat. Br. J. Pharmac., 70, 609–615.

    Google Scholar 

  • ANDERSEN, P., DINGLEDINE, R., GJERSTAD, L., LANGMOEN, I.A. & MOSFELDT-LAURSEN, A. (1980). Two different responses of hippocampal pyramidal cells to application of gamma-aminobutyric acid. J. Physiol., 305, 279–296.

    Google Scholar 

  • ANDERSEN, P., ECCLES, J.C. & LØYNING, Y. (1964). Location of post-synaptic inhibitory synapses on hippocampal pyramids. J. Neurophysiol., 27, 592–607.

    Google Scholar 

  • BARKER, J.L., McBURNEY, R.N. & MacDONALD, J.R. (1982). Fluctuation analysis of neutral amino acid responses in cultured mouse spinal neurones. J. Physiol., 322, 365–388.

    Google Scholar 

  • BLAXTER, T.J. & COTTRELL, G.A. (1982). Responses of rat hippocampal pyramidal cells to GABA and ethylene diamine. J. Physiol., 330, 46P.

    Google Scholar 

  • BORMANN, J., SAKMANN, B. & SEIFERT, W. (1983). Isolation of GABA-activated single-channel Cl− currents in the soma membrane of rat hippocampal neurones. J. Physiol., 341, 9P.

    Google Scholar 

  • BOWERY, N.G. (1982). Baclofen: 10 years on. Trends in Pharmac. Sci., 3, 400–403.

    Google Scholar 

  • CONNORS, B.W., GUTNICK, M.J. & PRINCE, D.A. (1982). Electrophysiological properties of neocortical neurons in vitro. J. Neurophysiol., 48, 1302–1320.

    Google Scholar 

  • CONSTANTI, A., CONNOR, J.D., GALVAN, M. & NISTRI, A. (1980). Intra-cellularly-recorded effects of glutamate and aspartate on neurones in the guinea-pig olfactory cortex slice. Brain Res., 195, 403–420.

    Google Scholar 

  • FUGITA, Y. (1979). Evidence for the existence of inhibitory post-synaptic potentials in dendrites and their functional significance in hippocampal pyramidal cells of adult rabbits. Brain Res., 175, 59–69.

    Google Scholar 

  • HAMILL, O.P., BORMANN, J. & SAKMANN, B. (1983). Activation of multiple-conductance state chloride channels in spinal neurones by glycine and GABA. Nature, 305, 805–808.

    Google Scholar 

  • HOTSON, J.R. & PRINCE, D.A. (1980). A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurones. J. Neurophysiol., 43, 409–419.

    Google Scholar 

  • JAHNSEN, H. & MOSFELDT LAURSEN, A.M. (1981). The effects of a benzodiazepine on the hyperpolarizing and depolarizing responses of hippocampal cells to GABA. Brain Res., 207, 214–217.

    Google Scholar 

  • JAHR, C.E. & NICOLL, R.A. (1982). An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. J. Physiol., 326, 213–234.

    Google Scholar 

  • KANDEL, E.R., SPENCER, S.A. & BRINLEY, F.J. (1961). Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. J. Neurophysiol., 24, 225–242.

    Google Scholar 

  • LANCASTER, B. & WHEAL, H.V. (1983). Ca2+ dependence of afterhyperpolarizations (AHPs) in CA1 pyramidal cells of the rat. J. Physiol., 334, 118P.

    Google Scholar 

  • MORI, K., NOWYCKY, M.C. & SHEPHERD, G.M. (1981). Analysis of synaptic potentials in mitral cells in the isolated turtle olfactory bulb. J. Physiol., 314, 295–309.

    Google Scholar 

  • NEWBERRY, N.R. & NICOLL, R.A. (1984a). A bicucullineresistant inhibitory postsynaptic potential in rat hippocampal pyramidal cells in vitro. J. Physiol., 348, 239, 254.

    Google Scholar 

  • NEWBERRY, N.R. & NICOLL, R.A. (1984b). Baclofen directly hyperpolarizes hippocampal pyramidal cells. Nature, 308, 450–452.

    Google Scholar 

  • NEWBERRY, N.R. & NICOLL, R.A. (1984c). Similarities between the actions of baclofen and the slow i.p.s.p. transmitter in rat hippocampal pyramidal cells in vitro. J. Physiol (in press).

    Google Scholar 

  • NICOLL, R.A. & ALGER, B.E. (1981). Synaptic excitation may activate a calcium-dependent potassium conductance in hippocampal pyramidal cells. Science, 212, 957–959.

    Google Scholar 

  • SATOU, M., MORI, K., TAZAWA, Y. & TAKAGI, S. (1982). Two types of postsynaptic inhibition in pyriform cortex of the rabbit: fast and slow inhibitory postsynaptic potentials. J. Neurophysiol., 48, 1142–1156.

    Google Scholar 

  • SOMOGYI, P., SMITH, A.D., NUNZI, M.G., GORIO, A., TAKAGI, H. & WU, J.Y. (1983). Glutamate decarboxylase immuno-reactivity in the hippocampus of the cat: distribution of immunoreactive synaptic terminals with special reference to the axon initial segment of pyramidal neurons. J. Neurosci., 3, 1450–1468.

    Google Scholar 

  • STORM-MATHISEN, J. (1977). Localization of transmitter candidates in the brain: the hippocampal formation as a model. Prog. Neurobiol., 8, 119–181.

    Google Scholar 

  • THALMANN, R.H. (1984). Reversal properties of an EGTA-resistant late hyperpolarization that follow synaptic stimulus of hippocampal neurones. Neurosci. Lea., 46, 103–105.

    Article  CAS  Google Scholar 

  • THALMANN, R.H. & AYALA. (1982). A late increase in potassium conductance follows synaptic stimulation of granule neurons of the dentate gyrus. Neurosci. Lett., 29, 243–248.

    Article  PubMed  CAS  Google Scholar 

  • THALMANN, R.H., PECK, E.J. & AYALA, G.F. (1981). Biphasic response of hippocampal pyramidal neurons to GABA. Neurosci. Lett., 21, 319–324.

    Article  PubMed  CAS  Google Scholar 

  • WONG, R.K.S & WATKINS, K.J. (1982). Cellular factors influencing GABA response in hippocampal pyramidal cells. J. Neurophysiol., 48, 938–951.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

William Paton James Mitchell Paul Turner Cheryl Padgham Eileen Ashcroft

Copyright information

© 1984 Macmillan Publishers Limited

About this chapter

Cite this chapter

Nicoll, R.A., Newberry, N.R. (1984). Electrophysiology of GABA receptors in the vertebrate central nervous system. In: Paton, W., Mitchell, J., Turner, P., Padgham, C., Ashcroft, E. (eds) IUPHAR 9th International Congress of Pharmacology London 1984. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-17615-1_23

Download citation

Publish with us

Policies and ethics