Skip to main content
Book cover

Biomaterials pp 123–213Cite as

Palgrave Macmillan

Polyhydroxyalkanoic acids

  • Chapter

Abstract

Polyhydroxyalkanoic acids (PHA) are water-insoluble polyesters of alkanoic acids containing a hydroxyl group as at least one functional group in addition to the carboxy group, and possess the general formula shown in Fig. 1. Although some of these polymers are also available from chemical synthesis, many of them are synthesized by bacteria and are deposited in abundant amounts in the cytoplasm of the cells. The variability of the position of the hydroxyl group and of the type of the R-pendant group of the constituents (see below), a large variety of different constituent monomers in copolyesters, as well as the varying degree of polymerization, allow the biosynthesis of many different polymers exhibiting different physical properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandl, H., Gross, R.A., Lenz, R.W. & Fuller, R.C. (1990) Plastics from bacteria and for bacteria: Poly(β-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. In Advances in Biochemical Engineering/Biotechnology (eds Ghose, T.K. & Fiechter, A.), Vol. 41, Springer, Berlin.

    Google Scholar 

  2. Dawes, E.A. & Ribbons, D.W. (1964) Some aspects of the endogenous metabolism of bacteria. Bacteriol. Rev. 28: 126–149.

    CAS  Google Scholar 

  3. Dawes, E.A. & Senior, P.J. (1973) Energy reserve polymers in microorganisms. Arch. Microbiol. Physiol. 14: 135–266.

    Article  Google Scholar 

  4. Dawes, E.A. & Senior, P.J. (1973) The role and regulation of energy reserve polymers in microorganisms. Adv. Microbiol. Physiol. 10: 135–278.

    Article  CAS  Google Scholar 

  5. Dawes, E.A. (1975) The role and regulation of poly-β-hydroxybutyrate as a reserve in microorganisms. In Proceedings of the International Symposium on Macromolecules (ed. Mano, E.B.), pp. 433–450. Elsevier, Amsterdam.

    Google Scholar 

  6. Dawes, E.A. (1986) Microbial Energetics. Blackie, Glasgow.

    Google Scholar 

  7. Dawes, E.A. (1988) Poly-β-hydroxybutyrate, an intriguing biopolymer. Bioscience Reports 8(6): 537–547.

    Article  CAS  Google Scholar 

  8. Dawes, E.A. (ed.) (1990) Novel Biodegradable Microbial Polymers. Kluwer, Dordrecht.

    Google Scholar 

  9. Doi, Y. (1990) Microbial Polyesters. VCH, New York.

    Google Scholar 

  10. Merrick, J.M. (1978) Metabolism of reserve materials. In The Photosynthetic Bacteria (eds Clayton, R.K. & Sistrom, W.R.), pp. 199–219. Plenum, New York.

    Google Scholar 

  11. Schlegel, H.G. (1962) Bildung von Speicherstoffen durch Knallgas-und Purpurbakterien. Veröffentlichung Deutsche Botanische Gesellschaft 1: 167–172.

    Google Scholar 

  12. Schlegel, H.G. & Gottschalk, G. (1962) Poly-β-hydroxybuttersaure, ihre Verbreitung, Funktion und Biosynthese. Angewandte Chemie 74: 342–346.

    Article  Google Scholar 

  13. Steinbüchel, A. & Schlegel, H.G. (1989) Excretion of pyruvate by mutants of Alcaligenes eutrophus, which are impaired in the synthesis of poly(β-hydroxybutyric acid), PHB, under conditions permissive for synthesis of PHB. Appl. Microbiol. Biotechnol. 31: 168–175.

    Article  Google Scholar 

  14. Tomita, K., Saito, T. & Fukui, T. (1983) Bacterial metabolism of poly-β-hydroxybutyrate. In Biochemistry of the Metabotic Process (eds Lennon, D.L.F., Stratman, F.W. & Zahlten, R.N.), pp. 353–366. Elsevier, New York.

    Google Scholar 

  15. Volova, T.G. (1990) Kalalewa: Polyoxybutyrate — ein thermoplastisch biodegradierbares Polymer. USSR Acad. Sci. Preprint N 131B.

    Google Scholar 

  16. Wilkinson, J.F. (1959) The problem of energy-storage compounds in bacteria. Exp. Cell Res. Suppl. 7: 114–130.

    Article  Google Scholar 

  17. Anderson, A.J. & Dawes, E.A. (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxylalkanoates. Microbiol. Rev. 54: 450–472.

    CAS  Google Scholar 

  18. Marchessault, R.H. (1988) History of polyalkanoate research. Polym. Prepr. 29: 594–595. Toronto.

    Google Scholar 

  19. Schlegel, H.G. (1990) Alcaligenes eutrophus and its scientific and industrial career. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 133–141. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  20. Steinbüchel, A. (1989) Poly(hydroxyfettsauren) — Speicherstoffe von Bakterien: Biosynthese und Genetik. Forum Mikrobiologie. 12: 190–198.

    Google Scholar 

  21. Steinbüchel, A. & Schlegel, H.G. (1991) Physiology and molecular genetics of poly(β-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Mol. Microbiol. 5: 535–542.

    Article  Google Scholar 

  22. Steinbüchel, A. (1991) Recent advances in the knowledge of bacterial poly(hydroxyalkanoic acid) metabolism and potential impacts on the production of biodegradable thermoplastics. Acta Biotechnol. (in the press).

    Google Scholar 

  23. Babel, W., Riis, V. & Hainich, E. (1990) Mikrobielle Thermoplaste: Biosynthese, Eigenschaft und Anwendung. Plaste Kautschuk 37: 109–115.

    CAS  Google Scholar 

  24. Byrom, D. (1987) Polymer synthesis by microorganisms: technology and economics. TIBTECH 5: 246–250.

    Article  CAS  Google Scholar 

  25. Hartley, P. (1987) Abbaubare Polymere aus dem Fermenter. Bioengineering 3: 66–68.

    Google Scholar 

  26. Holmes, P.A. (1985) Applications of PHB — a microbially produced biodegradable thermoplastic. Phys. Technol. 16: 32–36.

    Article  CAS  Google Scholar 

  27. Holmes, P.A. (1988) Biologically produced PHA polymers and copolymers. In Developments in Crystalline Polymers (ed. Bassett, D.C.), Vol. 2, pp. 1–65. Elsevier, London.

    Chapter  Google Scholar 

  28. Lafferty, R.M. & Heinzle, E. (1977) Extraction of a thermoplastic from bacteria. Chem. Rdsch. 30: 15–16.

    CAS  Google Scholar 

  29. Lafferty, R.M., Braunegg, G., Korneti, L., Strempfel, F., Bogensberger, B., Korsatko, W. & Wabnegg, B. (1984) PHB: Biotechnological production and polymer applications. Third European Congress on Biotechnology, Verlag Chemie, Weinheim, 521–527.

    Google Scholar 

  30. Lafferty, R.M., Korsatko, B. & Korsatko, W. (1988) Microbial production of poly-β-hydroxybutyric acid. In Biotechnology (eds Rehm, H.J. & Reed, G.), Vol. 66, pp. 136–176. Verlagsgesellschaft, Weinheim.

    Google Scholar 

  31. Steinbüchel, A. & Schlegel, H.G. (1988) Biologisch abbaubare Kunststoffe. Bakterielle poly-β-Hydroxyfettsauren als Kunststoffe der Zukunft. Sonderpublikation Labor 2000, pp. 148–155.

    Google Scholar 

  32. Tomita, K., Fukui, T. & Saito, T. (1984) Microbial poly-β-hydroxybutyrate and its application. Kobunshi 33: 370–373.

    Article  CAS  Google Scholar 

  33. Uttley, N.L. (1986) Properties and possible applications of some biopolyesters. Chimicaoggi Juli/August-Heft, 71–72.

    Google Scholar 

  34. Witholt, B., de Smet, M.-J., Kingma, J., van Beilen, J.B., Kok, M., Lageveen, R.G. & Eggink, G. (1990) Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnol. 8: 46–52.

    Article  CAS  Google Scholar 

  35. Anonymous (1990) Biodegradable plastic hits the production line. New Scientist 126: 36.

    Google Scholar 

  36. Lemoigne. M. (1026) Produits de deshydration et de polymerisation de l’acide β-oxybutyric. Bull. Soc. Chim. Biol. (Paris) 8: 770–782.

    Google Scholar 

  37. Davis, J.B. (1964) Cellular lipids of a Nocardia grown on propane and nbutane. Appl. Microbiol. 12: 301–304.

    CAS  Google Scholar 

  38. Wallen, L.L. & Davis, E.N. (1972) Environ. Sci. Technol. 6 161–164.

    Article  CAS  Google Scholar 

  39. Wallen, L.L. & Rohwedder, W.K. (1974) Poly-β-hydroxyalkanoate from activated sludge. Environ. Sci. Technol. 8: 576–579.

    Article  CAS  Google Scholar 

  40. Marchessault, R.H., Morikawa, H., Revol, J.-F. & Bluhm, T.L. (1984) Physical properties of a naturally occurring polyester: poly(β-hydroxyvalerate)/poly (β-hydroxybutyrate). Macromolecules 17: 1882–1884.

    Article  CAS  Google Scholar 

  41. Morikawa, H. & Marchessault, R.H. (1981) Pyrolysis of bacterial polyalkanoates. Can. J. Chem. 59: 2306–2313.

    Article  CAS  Google Scholar 

  42. Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G. & Witholt, B. (1988) Formation of polyesters by Pseudomonas oleovorans; effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly(R)-3-hydroxyalkenoates. Appl. Environ. Microbiol. 54: 2924–2932.

    CAS  Google Scholar 

  43. Nichols, P.D., Henson, J.M., Guckert, J.B., Nivens, D.E. & White, D.C. (1985) Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteria-polymer mixtures and biofilms. J. Microbiol. Meth. 4: 79–94.

    Article  CAS  Google Scholar 

  44. Apostolides, Z. & Potgieter, D.J.J. (1981) Determination of PHB (poly-β-hydroxybutyric acid) in activated sludge by a gas chromatographic method. Eur. J. Appl. Microbiol. Biotechnol. 13: 62–63.

    Article  CAS  Google Scholar 

  45. Brandl, H., Gross, R.A., Lenz, R.W. & Fuller, R.C. (1988) Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl. Environ. Microbiol. 54: 1977–1982.

    CAS  Google Scholar 

  46. Braunegg, G., Sonnleitner, B. & Lafferty, R.M. (1978) A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6: 29–37.

    Article  CAS  Google Scholar 

  47. Comeau, Y., Hall, K.J. & Oldham, W.K. (1988) Determination of poly-β-hydroxybutyrate and poly-β-hydroxyvalerate in activated sludge by gas-liquid chromatography. Appl. Environ. Microbiol. 54: 2325–2327.

    CAS  Google Scholar 

  48. Odham, G., Tunlid, A., Westerdahl, G. & Marden, P. (1986) Combined determination of poly-β-hydroxyalkanoic and cellular fatty acids in starved marine bacteria and sewage sludge by gas-chromatography with flame ionization or mass spectrometry detection. Appl. Environ. Microbiol. 52: 905–910.

    CAS  Google Scholar 

  49. Riis, V. & Mai, W. (1981) Gas chromatographic determination of poly-β-hydroxybutyric acid in microbial biomass after hydrochloric and propanolysis. J. Chromatogr. 445: 285–287.

    Article  Google Scholar 

  50. Doi, Y., Kunioka, M., Nakamura, Y. & Soga, K. (1986) Nuclear magnetic resonance studies on poly(β-hydroxybutyrate) and a copolyester of β-hydroxybutyrate and β-hydroxyvalerate isolated from Alcaligenes eutrophus H16. Macromolecules 19: 2860–2864.

    Article  CAS  Google Scholar 

  51. Fritsche, K., Lenz, R.W. & Fuller, R.C. (1990) Bacterial polyesters containing branched poly(β-hydroxyalkanoate) units. Int. J. Biol. Macromol. 12: 92–101.

    Article  Google Scholar 

  52. Holmes, P.A., Wright, L.F. & Colins, S.H. (1985) β-Hydroxybutyrate polymers. European Patent Application EP 52,459.

    Google Scholar 

  53. De Smet, M.J., Eggink, G., Witholt, B., Kingma, J. & Wynberg, H. (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J. Bacteriol. 154: 870–878.

    Google Scholar 

  54. Fernandez-Castillo, R., Rodriguez-Valera, F., Gonzales-Ramos, J. & Ruiz-Berraquero, F. (1986) Accumulation of poly(β-hydroxybutyrate) by halobacteria. Appl. Environ. Microbiol. 51: 214–216.

    CAS  Google Scholar 

  55. Lenz, R.W., Kim, B.-W., Ulmer, H.W. & Fritzsche, K. (1990) Functionalized poly-(β-hydroxyalkanoates produced by bacteria. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 23–35. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  56. Shimida, K., Matsushima, K., Fukumoto, J. & Yamamoto, T. (1969) Poly-(L)malic acid: a new protease inhibitor from Penicillium cyclopium. Biochem. Biophys. Res. Commun. 35: 619–624.

    Article  Google Scholar 

  57. Fischer, H., Erdmann, S. & Holler, E. (1989) An unusual polyanion from Physarum polycephalum that inhibits homologous DNA polymerase α in vitro. Biochemistry 28: 5219–5226.

    Article  CAS  Google Scholar 

  58. Gilding, D.K. & Reed, A.M. (1979) Biodegradable polymers for use in surgery. Polyglycolid/Polylactid homo-and copolymers. Polymers 20: 1459–1464.

    Article  CAS  Google Scholar 

  59. Holland, S.J., Tighe, B.J. & Gould, P.L. (1986) Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems. J. Contr. Rel. 4: 155–180.

    Article  CAS  Google Scholar 

  60. Shively, J.M. (1974) Inclusion bodies of prokaryotes. Ann. Rev. Microbiol. 28: 167–187.

    Article  CAS  Google Scholar 

  61. Schlegel, H.G., Gottschalk, G. & Von Bartha, R. (1961) Formation and utilization of poly-β-hydroxybutyric acid by knallgas bacteria (Hydrogenomonas). Nature 191: 463–465.

    Article  CAS  Google Scholar 

  62. Pedros-Alio, C., Mas, J. & Guerrero, R. (1985) The influence of poly-β-hydroxybutyrate accumulation on cell volume and buoyant density in Alcaligenes eutrophus. Arch. Microbiol. 143: 178–184.

    Article  CAS  Google Scholar 

  63. Lundgren, D.G., Pfister, R.M. & Merrick, J.M. (1964) Structure of poly-β-hydroxybutyric acid granules. J. Gen. Microbiol. 34: 441–446.

    Article  CAS  Google Scholar 

  64. Mas, J., Pedros-Alio, C. & Guerrero, R. (1985) Mathematical model for determining the effects of intracytoplasmic inclusions on volume and density of microorganisms. J. Bacteriol. 164: 749–756.

    CAS  Google Scholar 

  65. Haywood, G.W., Anderson, A.J. & Dawes, E.A. (1989) The importance of PHB-synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol. Lett. 57: 1–6.

    Article  CAS  Google Scholar 

  66. Peoples, O.P. & Sinskey, A.J. (1989) Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J. Biol. Chem. 264: 15298–15303.

    CAS  Google Scholar 

  67. Schubert, P., Krüger, N. & Steinbüchel, A. (1991) Molecular analysis of the Alcaligenes eutrophus poly(3-hydroxybutyrate)-, PHB-, biosynthetic operon: identification of the N-terminus of PHB-synthase and identification of the promoter. J. Bacteriol. 173: 168–175.

    CAS  Google Scholar 

  68. Barnard, G.N. & Sanders, J.K.M. (1988) Observation of mobile poly(β-hydroxybutyrate) in the storage granules of methylobacterium AM1 by in vivo13CNMR spectroscopy. FEBS Lett. 231: 16–18.

    Article  CAS  Google Scholar 

  69. Barnard, G.N. & Sanders, K.M. (1989) The poly-β-hydroxybutyrate granule in vivo. J. Biol. Chem. 24: 3286–3291.

    Google Scholar 

  70. Alper, R. Lundgren, D.G., Marchessault, R.H. & Cote, W.A. (1963) Properties of poly-β-hydroxybutyrate. I. General considerations concerning the naturally occurring polymer. Biopolymers 1: 545–556.

    Article  CAS  Google Scholar 

  71. Lundgren, D.G., Alper, R., Schnaitman, C. & Marchessault, R.H. (1965) Characterization of poly-β-hydroxybutyrate depolymerase of extracted from different bacteria. J. Bacteriol 89: 245–251.

    CAS  Google Scholar 

  72. Reusch, R.N. & Sadoff, H.L. (1983) D-(-)-poly-β-hydroxybutyrate in membranes of genetically competent bacteria. J. Bacteriol. 156: 778–788.

    CAS  Google Scholar 

  73. Reusch, R.N., Hiske, T.W. & Sadoff, H.L. (1986) Poly-β-hydroxybutyrate membrane structure and its relationship to genetic transformability in Escherichia coli. J. Bacteriol. 168: 553–562.

    CAS  Google Scholar 

  74. Reusch, R., Hiske, T., Sadoff, H., Harris, R. & Beveridge, T. (1987) Cellular incorporation of poly-β-hydroxybutyrate into plasma membranes of Escherichia coli and Azotobacter vinelandii alters native membrane structure. Can. J. Microbiol. 33: 435–444.

    Article  CAS  Google Scholar 

  75. Gilbert, P. & Brown, M.R.W. (1978) Effect of R-plasmid RP1 and nutrient depletion on the gross cellular composition of Escherichia coli and its resistance to some uncoupling phenols. J. Bacteriol. 133: 1062–1065.

    CAS  Google Scholar 

  76. Reusch, R.N. & Sadoff, H.L. (1988) Putative structure and functions of a poly-β-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes. Proc. Natl. Acad. Sci. U.S.A. 85: 4176–4180.

    Article  CAS  Google Scholar 

  77. Cornibert, J. & Marchessault, R.H. (1972) Physical properties of poly-β-hydroxybutyrate. IV. Conformational analysis and crystalline structure. J. Mol. Biol. 71: 735–756.

    Article  CAS  Google Scholar 

  78. Marchessault, R.H., Okamura, K. & Su, C.J. (1970) Physical properties of poly(β-hydroxybutyrate). II. Conformational aspects in solution. Macromolecules 3: 735–740.

    Article  CAS  Google Scholar 

  79. Marchessault, R.H., Cornibert, J., Benoit, H. & Weill, G. (1970) Physical properties of poly(β-hydroxybutyrate). III. Folding of helical segments in 2,2,2-trifluoroethanol. Macromolecules 3: 741–746.

    Article  CAS  Google Scholar 

  80. Reusch, R.N. (1989) Poly-β-hydroxybutyrate/calcium polyphosphate complexes in eukaryotic membranes. Proc. Soc. Ex. Biol. Med. 191: 377–381.

    Article  CAS  Google Scholar 

  81. Syldatk, C., Lang, S., Wagner, R., Wray, V. & Witte, L. (1985) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM2874 grown on n-alkanes. Z. Naturforsch. 40c: 51–60.

    CAS  Google Scholar 

  82. Syldatk, C., Lang, S., Matulovic, U. & Wagner, F. (1985) Production of four interfacial active rhamnolipids from n-alkanese or glycerol by resting cells of Pseudomonas species DSM2874. Z. Naturforsch. 40c: 61–67.

    CAS  Google Scholar 

  83. Hollingsworth, R.I., Abe, M., Dazzo, F.B. & Hallenga, K. (1984) Identification of 3-hydroxybutanoic acid as a component of the acidic extracellular polysaccharide of Rhizobium trifolii 0403. Carbohyd. Res. 134: C7–C11.

    Article  CAS  Google Scholar 

  84. Hollingsworth, R.I., Dazzo, F.B., Hallenga, K. & Musselman, B. (1988) The complete structure of the trifoliin, a lectin-binding capsular polysaccharide of Rhizobium trifolii 843. Carbohydr. Res. 172: 97–112.

    Article  CAS  Google Scholar 

  85. Burdon, K.L. (1946) Fatty material in bacteria and fungi by staining dried, fixed slide preparations. J. Bacteriol. 52: 665–678.

    CAS  Google Scholar 

  86. Haynes, W.C., Melvin, E.H., Locke, J.M., Glass, C.A. & Senti, F.R. (1958) Certain factors affecting the infrared spectra of selected microorganisms. Appl. Microbiol. 6: 298–304.

    CAS  Google Scholar 

  87. Hayward, A.C. (1959) Poly-β-hydroxybutyrate inclusions in the classification of aerobic gram-negative bacteria. J. Gen. Microbiol. 21: 2–3.

    Google Scholar 

  88. Emeruwa, A.C. & Hawirko, R.Z. (1973) Poly-β-hydroxybutyrate metabolism during growth and sporulation of Clostridium botulinum. J. Bacteriol. 116: 989–993.

    CAS  Google Scholar 

  89. Nuti, M.P., De Bertoldi, M. & Lepidi, A.A. (1972) A simple method of extraction of poly-β-hydroxybutyrate from aerobic and anaerobic soil bacteria. Tipolitografia ‘Editrice GiardiniPisa, pp. 1–5.

    Google Scholar 

  90. Nanninga, H.J. & Gottschal, J.C. (1987) Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobicpurification plant. Appl. Environ. Microbiol. 53: 802–908.

    CAS  Google Scholar 

  91. Widdel, F. (1980) Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten sulfatreduzierender Bakterien. Dissertation, Universität Göttingen.

    Google Scholar 

  92. Amos, D.A. & McInerney, M.J. (1989) Poly-β-hydroxyalkanoate in Synthrophomonas wolfei. Arch. Microbiol. 152: 172–177.

    Article  CAS  Google Scholar 

  93. Amos, D.A. & McInerney, M.J. (1990) Growth of Syntrophomonas wolfei on unsaturated short chain fatty acids. Arch. Microbiol. 154: 31–36.

    Article  CAS  Google Scholar 

  94. McInerney, M.J., Bryant, M.P., Hespell, R.B. & Costerton, J.W. (1981) Syntrophomonas wolfei gen. nov., sp. nov., an anaerobic syntrophic fatty acidoxidizing bacterium. Appl. Environ. Microbiol. 41: 1029–1039.

    CAS  Google Scholar 

  95. Henson, J.M., Smith, P.H. & White, D.C. (1985) Examination of thermophilic methane-producing digesters by analysis of bacterial lipids. Appl. Environ. Microbiol. 50: 1428–1433.

    CAS  Google Scholar 

  96. Gaffron, H. (1933) Über den Stoffwechsel der schwefelfreien Purpurbakterien. Biochem. Z. 260: 1–17.

    CAS  Google Scholar 

  97. Gaffron, H. (1935) Üer den Stoffwechsel der schwefelfreien Purpurbakterien II. Biochem. Z. 275: 301–319.

    CAS  Google Scholar 

  98. Liebergesell, M., Hustede, E., Timm, A., Steinbüchel, A., Fuller, R.C., Lenz, R.W. & Schlegel, H.G. (1991) Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria. Arch. Microbiol. 155: 415–421.

    Article  CAS  Google Scholar 

  99. Krasil’nikova, E.N., Keppen, O.I. & Kondrat’yeva, E.N. (1986) Chloroflexus aurantiacus growth in media with different organic compounds and the pathways of their metabolism. Mikrobiologiya 55: 425–430.

    CAS  Google Scholar 

  100. Pierson, B.K. & Castenholz, R.W. (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov., Arch. Microbiol. 100: 5–24

    Article  CAS  Google Scholar 

  101. Sirevag, R. & Castenholz, R. (1979) Aspects of carbon metabolism in Chloroflexus. Arch. Microbiol. 120: 151–153.

    Article  CAS  Google Scholar 

  102. Carr, N.G. (1966) The occurrence of poly-β-hydroxybutyrate in the blue-green alga, Chlorogloea fritschii. Biochim. Biophys. Acta 120: 308–310.

    Article  CAS  Google Scholar 

  103. Jensen, T.E. & Sicko, L.M. (1971) Fine structure of poly-β-hydroxybutyric acid granules in a blue-green alga, Chlorogloea fritschii. J. Bacteriol. 106: 683–686.

    CAS  Google Scholar 

  104. Jensen, T.E. & Sicko, L.M. (1973) Cytologica 38: 381–391.

    Google Scholar 

  105. Capon, R., Dunlop, R., Ghisalberti, E. & Jeffries, P. (1983) Poly-3-hydroxyalkanoates from marine and freshwater cyanobacteria. Phytochemistry 22: 1181–1184.

    Article  CAS  Google Scholar 

  106. Allen, M.M. (1984) Cyanobacterial cell inclusions. Ann. Rev. Microbiol. 38: 1–25.

    Article  CAS  Google Scholar 

  107. Campbell, J. III, Stevens, S.E. Jr. & Balkwill, D.L. (1982) Accumulation of poly-β-hydroxybutyrate in Spirulina platensis. J. Bacteriol. 149: 361–363.

    CAS  Google Scholar 

  108. Vincenzini, M., Sili, C., de Philipps, K., Ena, A. & Materassi, R. (1990) Occurrence of poly-β-hydroxybutyrate in Spirulina species. J. Bacteriol. 172: 2791–2797

    CAS  Google Scholar 

  109. Mikucki, J., Szarapinska-Kwaszweska, J. and Surewicz, K. (1979) Metabolizm endogenny a chorobotwarczosc gronkowcow koagulazoujemnyck. Med. Dosw. Mikrobiol 31: 65–75.

    CAS  Google Scholar 

  110. Szeweczyk, E. & Mickucki, J. (1989) Poly-β-hydroxybutyric acid in staphylococci. FEMS Microbiol. Lett. 61: 279–284.

    Google Scholar 

  111. Altekar, W. & Rajagopalan, R. (1990) Ribulose bisphosphate carboxylase activity in halophilic archaebacteria. Arch. Microbiol. 153: 169–174.

    Article  CAS  Google Scholar 

  112. Kirk, R.G. & Ginzburg, M. (1972) Ultrastructure of two species of Halobacterium. J. Ultrastruct. Res. 41: 80–94.

    Article  CAS  Google Scholar 

  113. Schlegel, H.G. (1969) From electricity via water electrolysis to food. In Fermentation Advances (ed. Perlmann, D.), pp. 807–832. Academic, New York.

    Google Scholar 

  114. Gottschalk, G. (1964) Die Biosynthese der Poly-β-hydroxybuttersäure durch Knallgasbakterien. I. Ermittlung der 14C-Verteilung in Poly-β-hydroxybuttersäure. Arch. Mikrobiol. 47: 225–229.

    Article  CAS  Google Scholar 

  115. Gottschalk, G. (1964) Die Biosynthese der Poly-β-hydroxybuttersaure durch Knallgasbakterien. II. Verwertung organischer Säuren. Arch. Mikrobiol. 47: 230–235.

    Article  CAS  Google Scholar 

  116. Schindler, J. (1964) Die Synthese der Poly-β-hydroxybuttersäure durch Hydrogenomonas H16: Die zu β-Hydroxybutyryl-Coenzym A führenden Reaktionsschritte. Arch. Mikrobiol. 49: 236–255.

    Article  CAS  Google Scholar 

  117. Oeding, V. (1972) Regulation des Poly-β-hydrobuttersäure-Stoffwechsels bei Hydrogenomonas eutropha Stamm H16 und PHBS-freie Mutaten. Dissertation, Universität Göttingen.

    Google Scholar 

  118. Oeding, V. & Schlegel, H.G. (1972) Wirksamkeit von Effektoren auf die β-Ketothiolase von Hydrogenomonas eutropha H16. Nachr. Akad. Wiss. in Göttingen. II. Math.-Phys. Klasse 6.

    Google Scholar 

  119. Ruhr, E.M. & Schlegel, H.G. (1975) Synthesis of poly-β-hydroxybutyrate in vivo and kinetics of β-ketothiolase in vitro in Alcaligenes eutrophus H16. Biochem. Soc. Transactions 3: 1093–1094.

    Article  CAS  Google Scholar 

  120. Ruhr, E.M. (1977) Regulation der Biosynthese von Poly-β-hydroxybuttersäure in Alcaligenes eutrophus H16. Dissertation, Universität Göttingen.

    Google Scholar 

  121. Brune, H. & Niemann, E. (1977) Über den Einsatz und die Verträglichkeit von Bakterieneinweiß (Hydrogenomonas) mit unterschiedlichem Gehalt an Poly-β-hydroxibuttersäure in der Tierernährung. 1. Mitteiluing. Gewichtsentwicklung und N-Bilanz bei wachsenden Ratten. Z. Tierphysiol. Tierernährg. Futtermittelk. 38: 13–22.

    Article  CAS  Google Scholar 

  122. Greife, H.A., Molnar, S. & Günther, K.-D. (1978) Biologische Bewertung der Proteinqualität von H2-oxidierenden Bakterienstämmen an Ratten. Z. Tierphysiol. Tierern. Futtermittelk. 40: 135–148.

    Article  CAS  Google Scholar 

  123. Greife, H.A., Molnar, S. & Günther, K.-D. (1981) N-Stoffwechsel wachsender Ratten bei Aufnahme steigender Mengen des H2-oxidierenden Bakterienstammes Alcaligenes eutrophus. Z. Tierphysiol. Tierern. Futtermittelk. 45: 91–100.

    Article  CAS  Google Scholar 

  124. Greife, H., Molnar, S. & Günther, K.-D. (1979) Proteinqualität des H2-oxidierenden Bakterienstammes Alcaligenes eutrophus in der Broilermast. 1. Mitteilung: Wachstum und Futterverwertung bei steigendem Austausch von Sojaextraktionsschrot durch die Bakterienmasse. Arch. Gefiugelk. 43: 129–138.

    CAS  Google Scholar 

  125. Greife, H., Molnar, S., Badawy-Hefez, N. & Günther, K.-D. (1979) Proteinqualität des H2-oxidierenden Bakterienstammes Alcaligenes eutrophus in der Broilermast. 2. Mitteilung: N-Verwertung und N-Stoffwechsel bei steigendem Austausch von Sojaextraktionsschrot durch die Bakterienmasse. Arch. Geflügelk. 43: 182–192.

    CAS  Google Scholar 

  126. Greife, H.A., Molnar, S. & Günther, K.-D. (1981) Weitere Untersuchungen zur N-Verwertung des H2-oxidierenden Bakterienstammes Alcaligenes eutrophus und alimentärer Ribonukleinsäure durch wachsende Broiler. Arch. Geflügelk. 45: 57–68.

    CAS  Google Scholar 

  127. Brune, H. & Niemann, E. (1977) Über den Einsatz und die Verträglichkeit von Bakterieneinweiß (Hydrogenomonas) mit unterschiedlichem Gehalt an Poly-β-hydroxibuttersäure in der Tierernährung. 2. Mitteilung. Untersuchungen zur Gewichtsentwicklung, N-Bilanz und zum Fettsäuremuster der Organe Leber, Muskel und Nierendepotfett beim wachsenden Schwein. Z. Tierphysiol. Tierernährg. Futtermittelk. 38: 81–93.

    Article  CAS  Google Scholar 

  128. King, P.P. (1982) Biotechnology. An industrial view. J. Chem. Tech. Biotechnol 32: 2–8.

    Article  CAS  Google Scholar 

  129. Baptist, J.N. (1962) Process for preparing poly-β-hydroxybutyric acid. US Patent Application US 3044942.

    Google Scholar 

  130. Baptist, J.N., Werber, F.X. (1965) Plasticized poly-beta-hydroxybutyric acid and process. US Patent Application US 3182036.

    Google Scholar 

  131. Bloembergen, S., Holden, D.A. & Marchessault, R.H. (1988) Nonbiochemical synthesis and characterization of PHB/PHV. Polym. Prepr. 29: 594–595.

    CAS  Google Scholar 

  132. Marchessault, R.H. & Faure, A.J. (1974) Synthesis of configurationally controlled oligomers of poly-β-hydroxybutyrate (PHB). Polym. Prepr. 15: 87–88.

    Article  CAS  Google Scholar 

  133. Shelton, J.R., Agostini, D.E. & Lando, J.B. (1971) Synthesis and characterization of poly-β-hydroxybutyrate. II. Synthesis of D-poly-β-hydroxybutyrate and the mechanism of ring-opening polymerization of β-butyrolactone. J. Polym. Sci., Part A-1 9: 2789–2799.

    Article  CAS  Google Scholar 

  134. Byrom, D. (1990) Industrial production of copolymer from Alcaligenes eutrophus. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 113–117. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  135. Sherwood, M. (1983) Bacterial plastic comes to market. BioTechnology 1: 388–389.

    Article  Google Scholar 

  136. Brandl, H. & Püchner, P. (1990) The degradation of shampoo bottles in a lake. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 421–422. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  137. Westlake, R.P. (1987) Biopol — the contribution of a biodegradable thermoplastic to the recycling issue. Kautschuk + Gummi Kunststoffe 40: 203–204.

    Google Scholar 

  138. Hänggi, U.J. (1990) Pilot scale production of PHB with Alcaligenes latus. In Novel Biodegradable Microbial Polymers (eds Dawes, E.A.), pp. 65–70. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  139. Trathnigg, B., Weidmann, V., Lafferty, R.M., Korsatko, B. & Korsatko, W. (1988) Niedermolekulares PHB. Angew. Makromol. Chemie 161: 1–8.

    Article  CAS  Google Scholar 

  140. Fraser, H.M., Sandow, J., Seidel, H.R. & Lunn, S.F. (1989) Controlled release of a GnRH agonist from a polyhydroxybutyric acid implant: reversible suppression of the menstrual cycle in the macaque. Acta. Endocrinol. 121: 841–848.

    CAS  Google Scholar 

  141. Seebach, D. & Zueger, M. (1982) Über die Depolymerisierung von poly(R)-3hydroxy-buttersäureester (PHB). Helv. Chim. Acta 65: 495–204.

    Article  CAS  Google Scholar 

  142. Seebach, D. & Zueger, M.F. (1985) On the preparation of methyl and ethyl (R)-(-)-3-hydroxyvalerate by depolymerization of a mixed PHB/PHV biopolymer. Tetrahedron Lett. 25: 2747–2750.

    Article  Google Scholar 

  143. Seebach, D., Roggo, S. & Zimmermann, J. (1987) Biological-chemical preparation of 3-hydroxycarboxylic acids and their use in EPC-synthesis. In Stereochemistry of Organic and Bioorganic Transformations (eds Bartmann, W. & Sharpless, K B) pp 85–125. VCH, Weinheim.

    Google Scholar 

  144. Seebach, D. (1988) β-Hydroxycarboxylic acids from the biopolymer PHB-PHV. Small molecules with great potential for EPC synthesis. Polym. Prepr. 29: 173–174.

    Article  Google Scholar 

  145. Biehler, M.J. (1989) A first practical use of specially constructed starter cultures in a new biotechnological nitrate elimination process for drinking water with degradable biopolymers as adhesion material. In DECHEMA Biotechnology Conferences (eds Behrens, D. & Driesel, A.J.), Vol. 3, Part B, pp. 997–1002.

    Google Scholar 

  146. Ando, Y. & Fukada, E. (1984) Piezoelectric properties and molecular motion of poly(β-hydroxybutyrate) films. J. Polym. Sci., Polym. Phys. Ed. 22: 1821–1834.

    Article  CAS  Google Scholar 

  147. Fukada, E. & Ando, Y. (1986) Piezoelectric properties of poly-beta-hydroxybutyrate and copolymers of beta-hydroxybutyrate and beta-hydroxyvalerate. Int. J. Biol. Macromol. 8: 361–366.

    Article  CAS  Google Scholar 

  148. Schlegel, H.G., Krauss, I. & Lafferty, R. (1969) Poly-β-hydroxybuttersäurearme und-reiche Mutanten von Hydrogenomonas H16. Nachr. Akad. Wiss. Göttingen. II. Math.-Physk. Klasse 159–168.

    Google Scholar 

  149. Schlegel, H. G., Lafferty, R. & Krauss, I. (1970) The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch. Microbiol. 71: 283–294.

    CAS  Google Scholar 

  150. Schlegel, H.G., Lafferty, R. & Krauss, I. (1970) Bacterial mutants of Hydrogenomonas lacking poly-β-hydroxybutyric acid. Experienta 26: 554.

    Article  CAS  Google Scholar 

  151. Schubert, P., Steinbüchel, A. & Schlegel, H.G. (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyrate (PHB) and synthesis of PHB in Escherichia coli. J. Bacteriol. 170: 5837–5847.

    CAS  Google Scholar 

  152. Bohlken, G. (1969) Zur Speicherung von Reservestoffen in Bacillus megaterium. II. Untersuchungen an Poly-β-hydroxybuttersäure-freien Mutanten. Zbl. Bakt. Parasitenkde. Abt. II. 123: 16–29.

    CAS  Google Scholar 

  153. Vollbrecht, D. & El Nawaway, M.A. (1980) Restricted oxgen supply and excretion of metabolites. I. Pseudomonas spec. and Paracoccus dentrificans. Eur. J. Appl. Microbiol. Biotechnol. 9: 1–8.

    Article  CAS  Google Scholar 

  154. Huisman, U.W., Wonink, E., Meima, R., Kazemier, B., Terpstra, P. & Witholt, B. (1991) Metabolism of poly(3-hydroxyalkanoates) by Pseudomonas oleovorans: identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J. Biol. Chem. 266: 2191–2198.

    CAS  Google Scholar 

  155. Vollbrecht, D. & Schlegel, H.G. (1979) Excretion of metabolites by hydrogen bacteria. III. D(-)-3-hydroxybutanoate. Eur. J. Appl. Microbiol. Biotechnol. 7: 259–266.

    Article  CAS  Google Scholar 

  156. Vollbrecht, D., Schlegel, H.G., Stoschek, G. & Janczikowski, A. (1979) Excretion of metabolites by hydrogen bacteria. IV. Respiration rate-dependent formation of primary metabolites and of poly-3-hydroxybutanoate. Eur. J. Appl. Microbiol. Biotechnol. 7: 267–276.

    Article  CAS  Google Scholar 

  157. Schubert, P., Steinbüchel, A. & Schlegel, H.G. (1988) Synthesis of poly-β-hydroxybutyric acid in Alcaligenes eutrophus, its genetic localization and conjugational transfer of the genes. Nachr. Akad. Wissensch. Göttingen, II. Math.-Physik. Klasse, 4,1–10.

    Google Scholar 

  158. Moskowitz, G.J. & Merrick, J.M. (1969) Metabolism of poly-β-hydroxybutyrate. Enzymatic synthesis of D-(-)-β-hydrobutyryl Coenzyme A by an enoyl hydrase from Rhodospirillum rubrum. Biochemistry 8: 2748–2755.

    Article  CAS  Google Scholar 

  159. Haywood, G.W., Anderson, A.J. & Dawes, E.A. (1989) A survey of the accumulation of novel polyhydroxyalkanoates by bacteria. Biotechnol. Lett. 11: 471–476.

    Article  CAS  Google Scholar 

  160. Huisman, G.W., Leeuw, O. de, Eggink, G. & Witholt, B. (1989) Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl. Environ. Microbiol. 55: 1949–1954.

    CAS  Google Scholar 

  161. Timm, A. & Steinbüchel, A. (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl. Environ. Microbiol. 56: 3360–3367.

    CAS  Google Scholar 

  162. Anderson, A.J., Haywood, G.W., Williams, D.R. & Dawes, E.A. (1990) The production of polyhydroxyalkanoates from unrelated carbon sources. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 119–129. Kluwer, ordrecht.

    Chapter  Google Scholar 

  163. Haywood, G.W., Anderson, A.J., Ewing, D.F. & Dawes, E.A. (1990) Accumulation of polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. strain NCIMB 40135. Appl. Environ. Microbiol. 56: 3354–3359.

    CAS  Google Scholar 

  164. Peoples, O.P. & Sinskey, A.J. (1989) Fine structural analysis of the Zoogloea ramigera phbA-phbB locus encoding β-ketothiolase and acetoacetyl-CoA reductase: nucleotide sequence of phbB. Mol. Microbiol. 3: 349–357.

    CAS  Google Scholar 

  165. Peoples, O.P. & Sinskey, A.J. (1989) Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase. J. Biol. Chem. 264: 15293–15297.

    CAS  Google Scholar 

  166. Slater, S.C., Voige, W.H. & Dennis, D.E. (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway. J. Bacteriol. 170: 4431–4436.

    CAS  Google Scholar 

  167. Huisman, G.W., Meima, R., Wonink, E. & Witholt, B. (1990) Genetic analysis of polyester synthesis in Pseudomonas oleovorans. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 451–452. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  168. Peoples, O.P. & Sinskey, A.J. (1990) Poly-hydroxybutyrate (PHB): A model system for biopolymer engineering: II. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 191–202. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  169. Witholt, B., Huisman, G.W. & Preusting, H. (1990) Bacterial Poly(3-hydroxyalkanoates). In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 161–173. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  170. Janes, B., Hollar, J. & Dennis, D. (1990) Molecular characterization of the poly-β-hydroxybutyrate biosynthetic pathway of Alcaligenes eutrophus H16. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 175–190. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  171. Oelmüler, U., Krüger, N., Steinbüchel, A. & Friedrich, C.G. (1990) Isolation of prokaryotic RNA and detection of specific mRNA with biotinylated probes. J. Microbiol. Meth. 11: 73–81.

    Article  Google Scholar 

  172. Steinbüchel, A. & Schubert, P (1989) Expression of the Alcaligenes eutrophus poly(β-hydroxybutyric acid) synthetic pathway in Pseudomonas sp. Arch. Microbiol. 153: 101–104.

    Article  Google Scholar 

  173. Timm, A., Byrom, D. & Steinbüchel, A. (1990) Formation of blends of various poly(3-hydroxyalkanoic acids) by a recombinant strain of Pseudomonas oleovorans. App. Microbiol. Biotechnol. 33: 296–301.

    Article  CAS  Google Scholar 

  174. Haywood, G.W., Anderson, A.J., Chu, L. & Dawes, E.A. (1988) The role of NADH-and NADPH-linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol. Lett. 52: 259–264.

    Article  CAS  Google Scholar 

  175. Peoples, O.P., Masamune, S., Walsh, C.T. & Sinskey, A.J. (1987) Biosynthetic thiolase from Zoogloea ramigera. III. Isolation and characterization of the structural gene. J. Biol. Chem. 262: 97–102.

    CAS  Google Scholar 

  176. Nishimura, T., Saito, T. & Tomita, K. (1978) Purification and properties of β-ketothiolase from Zoogloea ramigera. Arch. Microbiol. 116: 21–27.

    Article  CAS  Google Scholar 

  177. Shuto, H., Fukui, T. Saito, T., Shirakura, Y. & Tomita, K. (1981) An NAD-linked acetoacetyl-CoA reductase from Zoogloea ramigera I-16-M. Eur. J. Biochem. 118: 53–59.

    Article  CAS  Google Scholar 

  178. Stephenson, M.P., Jackson, F.A. & Dawes, E.A. (1978) Further observations on carbohydrate metabolism and its regulation in Azotobacter vinelandii. J. Gen. Microbiol. 109: 89–96.

    Article  CAS  Google Scholar 

  179. Brandl, H., Gross, R.A., Knee, E.J., Lenz, R.W. & Fuller, R.C. (1989) The ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly(β-hydroxyalkanoates): Potential sources for biodegradable polyesters. Int. J. Biol. Macromol. 11: 49–56.

    Article  CAS  Google Scholar 

  180. Brandl, H., Gross, R.A., Lenz, R.W., Lloyd, R. & Fuller, R.C. (1991) The accumulation of poly(β-hydroxyalkanoates) in Rhodobacter sphaeroides. Arch. Microbiol. 155.

    Google Scholar 

  181. Oeding, V. & Schlegel, H.G. (1973) β-Ketothiolase from Hydrogenomonas eutropha H16 and its signifcance in the regulation of poly-β-hydroxybutyrate metabolism. Biochem. J. 134: 239–248.

    Article  CAS  Google Scholar 

  182. Haywood, G.W., Anderson, A.J., Chu, L. & Dawes, E.A. (1988) Characterization of two 3-ketothiolases possessing differing substrate specificities in the polyhydroxyalkanoate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol. Lett. 52: 91–96.

    Article  CAS  Google Scholar 

  183. Arakawa, H., Takiguchi, M., Amaya, Y., Nagata, S., Hayashi, H. & Mori, M.S. (1987) cDNA-derived amino acid sequence of rat mitochondria 3-oxoacyl-CoA thiolase with no transient resequence: structural relationship with the peroxisomal isoenzyme. EMBO J. 6: 1361–1366.

    CAS  Google Scholar 

  184. Hijikata, M., Ishi, N., Kagamiyama, H., Osumi, T. & Hashimoto, T. (1987) J. Biol. Chem. 262: 8151–8158.

    CAS  Google Scholar 

  185. Masamune, S., Walsh, C.T., Sinskey, A.J. & Peoples, O.P. (1989) Poly-(R)3-hydroxybutyrate (PHB) biosynthesis: mechanistic studies on the biological Claisen condensation catalyzed by β-ketothiolase. Pure Appl. Chem. 61: 303–312.

    Article  CAS  Google Scholar 

  186. Masamune, S., Palmer, M.A.J., Gamboni, R., Thompson, S., Davis, J.T., Williams, S.F., Peoples, O.P. Sinskey, A.J. & Walsh, C.T. (1989) Bio-Claisen condensation catalyzed by thiolase from Zoogloea ramigera — active site cysteine residues. J. Am. Chem. Soc. 111: 1879–1881.

    Article  CAS  Google Scholar 

  187. Bitar, K.G., Perez-Aranda, A. & Bradshaw, R.A. (1980) Amino acid sequences of L-3-hydroxyacyl-CoA dehydrogenase from pig heart muscle. FEBS Lett. 116: 196–198.

    Article  CAS  Google Scholar 

  188. Griebel, R.J. & Merrick, J.M. (1971) Metabolism of poly-β-hydroxybutyrate: Effect of mild alkaline extraction on native poly-β-hydroxybutyrate granules. J. Bacteriol. 108: 782–789.

    CAS  Google Scholar 

  189. Ballistreri, A., Garozzo, D., Giuffrida, M., Impallomeni, G. & Montaudo, G. (1989) Sequencing bacterial poly(β-hydroxybutyrate-co-β-hydroxyvalerate) by partial methanolysis, high-performance liquid chromatography fractionation and fast atom bombardment mass spectrometry analysis. Macromolecules 22: 2107–2111.

    Article  CAS  Google Scholar 

  190. Ballistreri, A., Garozzo, D., Giuffrida, M. & Montaudo, G. (1990) Microstructure of bacterial poly(β-hydroxybutyrate-co-β-hydroxyvalerate) by fast atom bombardment mass spectrometry analysis of their partial degradation products. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 49–64. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  191. Doi, Y., Segawara, A. & Kunioka, M. (1990) Biosynthesis and characterization of poly-3-hydroxybutyrate-co-4-hydroxybutyrate in Alcaligenes eutrophus. Int. J. Biol. Macromol. 12: 106–111.

    Article  CAS  Google Scholar 

  192. Kunioka, M., Nakamura, Y. & Doi, Y. (1988) New bacterial copolyesters produced in Alcaligenes eutrophus from organic acids. Polym. Commun. 29: 174–176.

    CAS  Google Scholar 

  193. Doi, Y., Segawa, A., Kakamura, S. & Kunioka, M. (1990) Production of biodegradable copolyesters by Alcaligenes eutrophus. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 37–48. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  194. Doi, Y., Tamaki, A., Kunioka, M. & Soga, K. (1987) Biosynthesis of terpolyesters of 3-hydroxybutyrate, 3-hydroxyvalerate and 5-hydroxyvalerate from 5-chlorpentanoic and pentanoic acids. Makromol. Chem., Rapid Commun. 8: 631–635.

    Article  CAS  Google Scholar 

  195. Gross, R.A., Demello, C., Lenz, R.W., Brandl, H. & Fuller, R.C. (1989) The biosynthesis and characterization of poly(β-hydroxyalkanoates) produced by Pseudomonas oleovorans. Macromolecules 22: 1106–1115.

    Article  CAS  Google Scholar 

  196. Fritzsche, K., Lenz, R.W. & Fuller, R.C. (1990) Production of unsaturated polyesters by Pseudomonas oleovorans. Int. J. Biol. Macromol. 12: 85–91.

    Article  CAS  Google Scholar 

  197. Eggink, G., van der Wal, H. & Huyberts, G. (1990) Production of poly-3-hydroxyalkanoates by P. putida during growth on long-chain fatty acids. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 441–444. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  198. Findlay, R.H.D. & White, D.C. (1983) Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl. Environ. Microbiol. 45: 71–78.

    CAS  Google Scholar 

  199. Haywood, G.W., Anderson, A.J., Williams, D.R. & Dawes, E.A. (1991) The accumulation of a polyhydroxyalkanoate copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int. J. Biol. Mol. 13: 83–88.

    CAS  Google Scholar 

  200. Rodriguez-Valera, F. & Lillo, J.A.G. (1990) Halobacteria as producers of poly-β-hydroxyalkanoates. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 425–426. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  201. Reh, M. & Schlegel, H.G. (1969) Die Biosynthese von Isoleucin und Valin in Hydrogenomonas H16. Arch. Microbiol. 67: 110–127.

    CAS  Google Scholar 

  202. Kunioka, M., Kawaguchi, Y. & Doi, Y. (1989) Production of biodegradable copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate by Alcaligenes eutrophus. Appl. Microbiol. Biotechnol. 30: 569–573.

    CAS  Google Scholar 

  203. Kunioka, M. & Doi, Y. (1990) Thermal degradation of microbial copolyesters:poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 23: 1933–1936.

    Article  CAS  Google Scholar 

  204. Doi, Y., Tamaki, A., Kunioka, M. & Soga, K. (1987) Biosynthesis of an unusual copolyester (10 mol% 3-hydroxybutyrate and 90 mol% 3-hydroxyvalerate units) in Alcaligenes eutrophus from pentanoic acid. J. Chem. Soc., Chem. Commun. 21: 1635–1636.

    Article  Google Scholar 

  205. Doi, Y., Tamaki, A., Kunioka, M. & Soga, K. (1988) Production of co-polyesters of 3-hydroxybutyrate from butyric and pentanoic acids. Appl. Microbiol. Biotechnol. 28: 330–334.

    Article  CAS  Google Scholar 

  206. Collins, S.H. (1987) Choice of substrate in polyhydroxybutyrate synthesis. In Carbon Substrates in Biotechnology (eds Stowell, J. D. et al.), pp. 161–168. Soc. Gen. Microbiol., London.

    Google Scholar 

  207. Wilde, E. (1962) Untersuchungen über Wachstum und Speicherstoffsynthese von Hydrogenomonas Arch. Mikrobiol. 43: 109–137.

    Article  CAS  Google Scholar 

  208. Konig, C., Sammler, J., Wilde, E. & Schlegel, H.G. (1969) Konstitutiv Glucose-6-phosphat-Dehydrogenase bei Glucose-verwertenden Mutanten von einem kryptischen Wildstamm. Arch. Mikrobiol. 67: 51–57.

    Article  CAS  Google Scholar 

  209. Schlegel, H.G. & Gottschalk, G. (1965) Verwertung von Glucose durch eine Mutante von Hydrogenomonas H16. Biochem. Z. 342: 249–259.

    Google Scholar 

  210. Friehs, K. & Lafferty, R.M. (1989) Enlargement of the substrate spectrum of Alcaligenes eutrophus H16 by integration of the gene for levanase from Bacillus subtilis. In DECHEMA Biotechnology Conferences (eds Behrens, D. & Driesel, A.), Vol. 3 Part A. pp. 341–344.

    Google Scholar 

  211. Nordsiek, G. & Bowien, B. (1990) Construction of sucrose-utilizing strains of Alcaligenes entrophus. Forum Mikrobiologie 13: 89.

    Google Scholar 

  212. Pries, A., Steinbüchel, A. & Schlegel, H.G. (1989) Construction of lactoseutilizing strains of the poly(β-hydroxyalkanoic acid) accumulating Alcaligenes eutrophus. In DECHEMA Biotechnology Conferences (eds Behrens, D. & Driesel, A.), Vol. 3, Part A, pp. 421–424.

    Google Scholar 

  213. Pries, A., Steinbüchel, A. & Schlegel, H.G. (1990) Lactose and galactose utilizing strains of poly(hydroxyalkanoic acid) accumulating Alcaligenes eutrophus and Pseudomonas saccharophila by recombinant DNA technology. Appl. Microb. Biotechnol. 33: 410–417.

    CAS  Google Scholar 

  214. McLellan, D.W. & Halling, P.J. (1988) Acid-tolerant poly(3-hydroxybutyrate) hydrolases from moulds. FEMS Microbiol. Lett. 52: 215–218.

    Article  CAS  Google Scholar 

  215. Hippe, H. (1967) Abbau und Wiederverwertung von Poly-β-hydroxybuttersäure durch Hydrogenomonas H16. Arch. Microbiol. 56: 248–277.

    CAS  Google Scholar 

  216. Hippe, H. & Schlegel, H.G. (1967) Hydrolyse von PHBS durch intracelluläre Depolymerase von Hydrogenomonas H16. Arch. Mikrobiol. 56: 278–299.

    CAS  Google Scholar 

  217. Merrick, J.M., Lundgren, D.G. & Pfister, R.M. (1964) Morphological changes in poly-β-hydroxybutyrate granules associated with decreased susceptibility to enzymatic hydrolysis. J. Bacteriol. 89: 234–239.

    Google Scholar 

  218. Merrick, J.M. & Yu, C. (1966) Purification and properties of a D(-)β-hydroxybutyric dimer hydrolase from Rhodospirillum rubrum. Biochemistry 5: 3563–3568.

    Article  CAS  Google Scholar 

  219. Griebel, R., Smith, Z. & Merrick, J.M. (1968) Metabolism of poly-β-hydroxybutyrate. I. Purification, composition, and properties of native poly-β-hydroxybutyrate granules from Bacillus megaterium. Biochemistry 7: 3676–3681.

    Article  CAS  Google Scholar 

  220. Bradel, R., Kleinke, A. & Reichert, K.H. (1989) Molecular weight of bacterially produced poly-D-(-)-3-hydroxybutyrate. In DECHEMA Biotechnology Conferences (eds Behrens, D. & Driesel, A.J.), Vol. 3, Part A, pp. 207–210.

    Google Scholar 

  221. Merrick, J.M. & Doudoroff, M. (1964) Depolymerization of poly-β-hydroxybutyrate by an intracellular enzyme. J. Bacteriol. 88: 60–71.

    CAS  Google Scholar 

  222. Doi, Y., Segawa, A., Kawaguchi, Y. & Kunioka, M. (1990) Cyclic nature of poly(3-hydroxyalkanoate) metabolism in Alcaligenes eutrophus. FEMS Microbiol. Lett. 67: 165–170.

    Article  CAS  Google Scholar 

  223. Steinbüchel, A., Schubert, P., Timm, A. & Pries, A (1990) Genetic analysis of the Alcaligenes eutrophus poly(hydroxyalkanoate)-synthetic genes and accumulation of PHA in recombinant bacterial strains. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 143–159. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  224. Malik, K.A. & Claus, D. (1978) A method for the demonstration of extracellular hydrolysis of poly-β-hydroxybutyrate. J. Appl. Bacteriol. 45: 143–146.

    Article  CAS  Google Scholar 

  225. Delafield, F.P., Cooksey, K.E. & Doudoroff, M. (1965) β-Hydroxybutyric dehydrogenase and dimer hydrolase of Pseudomonas lemoignei. J. Biol. Chem. 240: 4023–4028.

    CAS  Google Scholar 

  226. Lusty, C.J. & Doudoroff, M. (1966) Poly-β-hydroxybutyrate depolymerase of Pseudomonas lemoignei. Proc. Natl. Acad. Sci. U.S.A. 56: 960–965.

    Article  CAS  Google Scholar 

  227. Tanaka, Y. et al. (1981) Purification and properties of D(-)-3-hydroxybutyrate dimer hydrolase from Zoogloea ramigera I-16-M. Eur. J. Biochem. 118: 177–182.

    Article  CAS  Google Scholar 

  228. Shirakura, Y., Fukui, T., Tanio, T., Nakayama, K., Matsuno, R. & Tomita, K. (1983) An extracellular D(-)-3-hydroxybutyrate oligomer hydrolase from Alcaligenes eutrophus. Biochim. Biophys. Acta 880: 46–53.

    Article  Google Scholar 

  229. Tanio, T., Fukui, T., Saito, T., Tomita, K., Kaiho, T. & Masamune, S. (1982) An extracellular poly(β-hydroxybutyrate) depolymerase from Alcaligenes faecalis. Eur. J. Biochem. 124: 71–77.

    CAS  Google Scholar 

  230. Shirakura, Y., Fukui, T., Saito, T., Okamoto, Y., Narikawa, T., Koide, K., Tomita, K., Takemasa, T. & Masamune, S. (1986) Degradation of poly(3-hydroxybutyrate) by poly(3-hydroxybutyrate) depolymerase from Alcaligenes eutrophus T1. Biochim. Biophys. Acta 880: 46–53.

    Article  CAS  Google Scholar 

  231. Fukui, T., Narikawa, T., Miwa, K., Shirakura, Y., Saito, T. & Tomita, K. (1988) Effect of limited tryptic modifications of a bacterial poly(3-hydroxybutyrate) depolymerase on its catalytic activity. Biochim. Biophys. Acta 952: 164–171.

    Article  CAS  Google Scholar 

  232. Saito, T., Suzuki, K., Yamamoto, J., Fukui, T., Miwa, K., Tomita, K., Nakanishi, S., Odani, S., Suzuki, J.-I. & Ishikawa, K. (1989) Cloning, nucleotide sequence and expression in Escherichia coli of the gene for poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalis. J. Bacteriol. 171: 184–189.

    CAS  Google Scholar 

  233. Doi, Y., Kanesawa, Y. & Kunioka, M. (1990) Biodegradation of microbial copolyesters: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 23: 26–31.

    Article  CAS  Google Scholar 

  234. Janssen, P.H. & Harfoot, C.G. (1990) Ilyobacter delafieldii sp. nov., a metabolically restricted anaerobic bacterium fermenting PHB. Arch. Microbiol. 154: 253–259.

    Article  CAS  Google Scholar 

  235. Dörner, C. & Schink, B. (1990) Clostridium homopropionicum sp. nov., a new strict anaerobe growing with 2-, 3-, or 4-hydroxybutyrate. Arch. Microbiol. 154: 342–348

    Article  Google Scholar 

  236. Stieb, M. & Schink, B (1984) A new 3-hydroxybutyrate fermenting anaerobe, Ilyobacter polytrophus, ge. nov. sp. nov., posseses various fermentation pathways. Arch. Microbiol. 140: 139–146.

    Article  CAS  Google Scholar 

  237. Pool, R. (1989) In search of the plastic potato. Science 245: 1187–1189.

    Article  CAS  Google Scholar 

  238. Amos, D.A. & McInerney, M.J. (1990) Composition of polyhydroxyalkanoate from Syntrophomonas wolfei grown on unsaturated fatty acid substrates. Arch. Microbiol. 155: 103–106.

    Article  Google Scholar 

  239. Witholt, B., Lageveen, R.G., Huisman, G.W., Preusting, H., Nijenhuis, A., Kingma, J., Tijsterman, A. & Eggink, G. (1988) The production of polyalkanoates by Pseudomonas oleovorans. Polym. Prepr. 29: 592–593.

    CAS  Google Scholar 

  240. Guerin, P., Braud, C., Girault, J.P., Vert, M., Holler, E., Fischer, H. & Windisch, C. (1990) Poly(malic acid), a functional poly(β-hydroxy acid)-type polyester available from chemical and biological synthesis. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 419–420. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  241. Deinema, M.H. (1972) Bacterial flocculation and production of poly-β-hydroxybutyrate. Appl. Microbiol. 24: 857–858.

    CAS  Google Scholar 

  242. Yamasoto, K., Akagawa, M., Oishi, U. & Kuraiski, H. (1982) Carbon substrate assimilation profiles and other taxonomic features of Alcaligenes faecalis, A. ruhlandii and Achromobacter xylosoxidans. J Gen. Appl. Microbiol 28: 195–213

    Article  Google Scholar 

  243. Lotter, L.H., Wentzel, M.C., Loewenthal, R.E., Ekama, G.A. & Marais, G.R. (1986) A study of selected characteristics of Acinetobacter spp. isolated from activated sludge in anaerobic/anoxic/aerobic and aerobic systems. Water SA 12: 203–208.

    CAS  Google Scholar 

  244. Vierkant, M.A., Martin, D.W. & Stewart, J.R. (1990) Poly-β-hydroxybutyrate production in eight strains of the genus Acinetobacter. Can. J. Microbiol. 36: 657–663.

    CAS  Google Scholar 

  245. Wentzel, M.C., Lotter, L.H., Loewenthal, R.E. & Marais, G.R. (1986) Metabolic behavior in Acinetobacter spp. in enhanced biological phosphorus removal — a biochemical model. Water SA 12: 209–224.

    CAS  Google Scholar 

  246. James, L.A. & Stewart, J.R. (1989) The monomeric composition of poly-β-hydroxyalkanoates of eight strains of Acinetobacter calcoaceticus. Abstract Annual Meeting ASM, New Orleans, p. 256.

    Google Scholar 

  247. Kannan, L.V. & Rehacek, Z. (1970) Formation of poly-beta-hydroxybutyrate by Actinomyces Ind. J. Biochem. 7: 126–129.

    CAS  Google Scholar 

  248. Kiredjian, M.M., Popoff, M., Coynault, C., Lefevre, M. & Lemelin, M. (1981) Taxonomie du genre Alcaligenes. Ann. Microbiol. (Inst. Pasteur) 132B: 337–374.

    Google Scholar 

  249. Baumann, L., Baumann, P., Mandel, M. & Allen, R.D. (1972) Taxonomy of aerobic marine eubacteria. J. Bacteriol. 110: 402–429.

    CAS  Google Scholar 

  250. Pichinoty, F., Vernon, M., Mandel, M., Durand, M., Job, C. & Garcia, J.L. (1978) Etude physiologique et taxonomique du genre Alcaligenes: A. denitrificans, A. odorans, A. faecalis. Can. J. Microbiol. 24: 743–753.

    Article  CAS  Google Scholar 

  251. Steinbüchel, A., Kuhn, M., Niedrig, M. & Schlegel, H.G. (1985) Fermentation enzymes in strictly aerobic bacteria: comparative studies on strains of the genus Alcaligenes and on Nocardia opaca, and Xanthomonas autotrophicus. J. Gen. Microbiol 129: 2825–2835.

    Google Scholar 

  252. Davis, D.H., Stanier, R.Y., Doudoroff, M. & Mandel, M. (1970) Taxonomic studies on some gram negative polarly flagellated ‘hydrogen bacteria’ and related species. Arch. Microbiol. 70: 1–13.

    CAS  Google Scholar 

  253. Doi, Y., Kunioka, M., Nakamura, Y. & Soga, K. (1986) Biosynthesis of polyesters by Alcaligenes eutrophus: incorporation of 13C-labelled acetate and propionate. J. Chem. Soc.. Chem. Commun. 23: 1696–1697.

    Article  Google Scholar 

  254. Doi, Y., Kunioka, M. & Soga, K. (1986) Biosynthesis of polyesters by Alcaligenes eutrophus: incorporation of carbon-13-labeled acetate and propionate. J. Chem. Soc., Chem. Commun. 23: 1696–1697.

    Article  Google Scholar 

  255. Kawaguchi, Y. & Doi, Y. (1990) Structure of native poly(3-hydroxybutyrate) granules characterized by X-ray diffraction. FEMS Microbiol. Lett. 70: 151–156.

    Article  CAS  Google Scholar 

  256. Bitar, A. & Underhill, S. (1990) Effect of ammonium supplementation on production of poly-β-hydroxybutyric acid by Alcaligenes eutrophus in batch culture. Biotechnol. Lett. 12: 563–568.

    Article  CAS  Google Scholar 

  257. Blackkolb, F. & Schlegel, H.G. (1968) Katabolische Repression und Enzymhemmung durch molekularen Wasserstoff bei Hydrogenomonas. Arch. Mikrobiol. 62: 129–143.

    Article  CAS  Google Scholar 

  258. Jüttner, R.R., Lafferty, R.M. & Knackmuss, H.J. (1975) A simple method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. 1: 233–237.

    Article  Google Scholar 

  259. Doi, Y., Kunioka, M. & Soga, K. (1986) Conformational analysis of poly(β-hydroxybutyrate) in Alcaligenes eutrophus by solid-state carbon-13 NMR spectroscopy. Makromol. Chem., Rapid Commun. 7: 661–664.

    Article  CAS  Google Scholar 

  260. Walther-Mauruschat, A., Aragno, M., Mayer, F. & Schlegel, H.G. (1977) Micromorphology of Gram-negative hydrogen bacteria. II. Cell envelope, membranes, and cytoplasmic inclusions. Arch. Microbiol. 114: 101–110.

    Article  CAS  Google Scholar 

  261. Bowien, B., Cook, A.M. & Schlegel, H.G. (1974) Evidence for the in vivo regulation of glucose 6-phosphate dehydrogenase activity in Hydrogenomonas eutropha H16 from measurements of the intracellular concentrations of metabolic intermediates. Arch. Microbiol. 97: 273–281.

    Article  CAS  Google Scholar 

  262. Haywood, G.W., Anderson, A.J., Chu, L. & Dawes, E.A. (1988) Accumulation of polyhydroxyalkanoates by bacteria and the substrate specificity of the biosynthetic enzymes. Biochem. Soc. Trans. 16: 1046–1047.

    Article  CAS  Google Scholar 

  263. Ramsay, J.A., Berger, E., Ramsay, B.A. & Chavarie, C. (1990) Recovery of polyhydroxyalkanoic acid granules by a surfactant-hypochlorite treatment. Biotechnol. Tech. 4: 221–226.

    Article  CAS  Google Scholar 

  264. Doi, Y., Kunioka, M., Nakamura, Y. & Soga, K. (1987) Biosynthesis of copolymer in Alcaligenes eutrophus H16 from 13C-labeled acetate and propionate. Macromolecules 20: 2988–2991.

    Article  CAS  Google Scholar 

  265. Cook, A.M. & Schlegel, H.G. (1978) Metabolite concentrations in Alcaligenes eutrophus H16 and a mutant defective in poly-(β-hydroxybutyrate synthesis. Arch. Microbiol. 119: 231–235.

    Article  CAS  Google Scholar 

  266. Doi, Y. Kunioka, M., Tamaki, A., Nakamura, Y. & Soga, K. (1988) Nuclear magnetic resonance studies on bacterial copolyesters of 3-hydroxybutyric acid and 3-hydroxyvaleric acid. Makromol. Chem. 1898: 1077–1086.

    Article  Google Scholar 

  267. Doi, Y., Kunioka, M., Nakamura, Y. & Soga, K. (1988) Nuclear magnetic resonance studies on unusual bacterial copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate. Macromolecules 21: 2722–2727.

    Article  CAS  Google Scholar 

  268. Doi, Y., Kawaguchi, Y., Nakamura, Y. & Kunioka, M. (1989) Nuclear magnetic resonance studies of poly(3-hydroxybutyrate) and polyphosphate metabolism in Alcaligenes eutrophus. Appl. Environ. Microbiol. 55: 2932–2938.

    CAS  Google Scholar 

  269. Schindler, J. & Schlegel, H.G. (1963) D(-)-β-Hydroxybuttersäure Dehydrogenase aus Hydrogenomonas H16. Biochem. Z. 339: 309–316.

    Google Scholar 

  270. Gottschalk, G. (1964) Die Biosynthese der Poly-β-hydroxybuttersäure durch Knallgasbak. III. Synthese aus Kohlendioxid. Arch. Mikrobiol. 47: 236–250.

    Article  CAS  Google Scholar 

  271. Gottschalk, G. & Schlegel, H.G. (1965) Preparation of 14C-D(-)-β-hydroxybutyric acid from using ‘Knallgas’ bacteria (Hydrogenomonas). Nature 254: 308.

    Article  Google Scholar 

  272. Groom, C.A., Luong, J.H.T. & Mulchandani, A. (1988) On-line culture fluorescence measurement during the batch cultivation of poly-beta-hydroxybutyrate producing Alcaligenes eutrophus. J. Biotechnol. 8: 271–278.

    Article  CAS  Google Scholar 

  273. Heinzle, E. & Lafferty, R.M. (1980) Continuous mass spectrometric measurement of dissolved H2, O2, and and CO2 during chemolithoautotrophic growth of Alcaligenes eutrophus strain H16. Eur. J. Appl. Microbiol. Biotechnol. 11: 17–22.

    Article  CAS  Google Scholar 

  274. Heinzle, E. & Lafferty, R.M. (1980) A kinetic model for growth and synthesis of poly-β-hydroxybutyric acid (PHB) in Alcaligenes eutrophus H16. Eur. J. Appl. Microbiol. Biotechnol. 11: 8–16.

    Article  CAS  Google Scholar 

  275. Kunioka, M., Tamaki, A. & Doi, Y. (1989) Crystalline and thermal properties of bacterial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 22: 694–697.

    Article  CAS  Google Scholar 

  276. Kesler, T.G., Voitovich, Ya. V., Anistratova, N.A., Trubachev, I.N. & Eroshin, N.S. (1972) Growth and the biochemical composition of hydrogen bacteria under conditions of biosynthesis blockage by biogenic elements. Mikrobiologiya 41: 456–460.

    CAS  Google Scholar 

  277. Schubert, P., Steinbüchel, A. & Schlegel, H.G. (1989) Genes involved in the synthesis of poly(β-hydroxyalkanoic acid) in Alcaligenes eutrophus. In DECHEMA Biotechnology Conferences (eds Behrens, D. & Driesel, A.J.), Vol. 3, Part A, pp. 433–436.

    Google Scholar 

  278. Linton, J.D. (1990) Physiology of exopolysaccharide production. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 311–330. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  279. Schubert, P., Pries, A., Krüger, N. & Steinbüchel, A. (1990) Molecular analysis of the Alcaligenes eutrophus PHB-biosynthetic genes: indentification of the NH2-terminus of PHB synthase and identification of the transcription start site of phbC. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 447–448. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  280. Morinaga, Y., Yamanaka, S., Ishizaki, A. & Hirose, Y. (1978) Growth and cell composition of Alcaligenes eutrophus in chemostate culture. Agric. Biol. Chem. 42: 439–444.

    Article  CAS  Google Scholar 

  281. Mulchandani, A., Luong, J.H.T. & Groom, C. (1989) Substrate inhibition kinetics for microbial growth and synthesis of poly-β-hydroxybutyric acid by Alcaligenes eutrophus ATCC 17697. Appl. Microbiol. Biotechnol. 30: 11–17.

    CAS  Google Scholar 

  282. Ramsay, B.A., Lomaliza, K., Chavarzi, C., Dube, B., Bataille, P. & Ramsay, J.A. (1990) Production of poly-(β-hydroxybutyric-co-β-hydroxyvaleric) acids. Appl. Environ. Microbiol. 56: 2093–2098.

    CAS  Google Scholar 

  283. Repaske, R. & Repaske, A.C. (1976) Quantitative requirements for exponential growth of Alcaligenes eutrophus. Appl. Environ. Microbiol. 32: 585–591.

    CAS  Google Scholar 

  284. Repaske, R. & Mayer, R. (1976) Dense autotrophic cultures of Alcaligenes eutrophus. Appl. Environ. Microbiol. 32: 592–597.

    CAS  Google Scholar 

  285. Schlegel, H.G. & Steinbüchel, A. (1981) Die relative Respirationsrate (RRR), ein neuer Belüftungsparameter. In Fermantation (ed. Lafferty, R.M.), pp. 10–26, Springer, Wien.

    Google Scholar 

  286. Schuster, E. & Schlegel, H.G. (1967) Chemolithotrophic growth of Hydrogenomonas H-16 using electrolytic production of hydrogen and oxygen in a chemostat. Arch. Microbiol. 58: 380–409.

    CAS  Google Scholar 

  287. Siegel, R.S. & Ollis, D.F. (1984) Kinetics of growth of the hydrogen-oxidizing bacterium Alcaligenes eutrophus (ATCC 17707) in chemostat culture. Biotechnol. Bioeng. 26: 764–770.

    Article  CAS  Google Scholar 

  288. Sonnleitner, B., Heinzle, E., Braunegg, G. & Lafferty, R.M. (1979) Formal kinetics of poly-β-hydroxybutyric (PHB) production in Alcaligenes eutrophus H16 and Mycoplana rubra R14 with respect to the dissolved oxygen tension in ammonium limited batch cultures. Eur. J. Appl. Mircobiol. Biotechnol. 7: 1–10.

    Article  CAS  Google Scholar 

  289. Srienc, F., Arnold, B. & Bailey, J.E. (1984) Characterization of intracellular accumulation of poly-β-hydroxybutyrate (PHB) in individual cells of Alcaligenes eutrophus H16 by flow cytometry. Biotechnol Bioeng. 26: 982–987.

    Article  CAS  Google Scholar 

  290. Thiele, O.W., Dreysel, J. & Herman, D. (1972) The ‘free’ lipids of two different strains of hydrogen-oxidizing bacteria in relation to their growth phase. Eur. J. Biochem. 29: 224–236.

    Article  CAS  Google Scholar 

  291. Trubachev, I.N., Kalachev, G.S., Andreeva, R.I. & Voitovich, Ya. V. (1971) Effect of growth conditions on the biochemical composition of hydrogen bacteria. Mikrobiologiya 40: 424–427.

    CAS  Google Scholar 

  292. Vedenina, I.Y. (1968) Principal cell components during autotrophic growth of Hydrogenomonas Z-1. Mikrobiologiya 37, 5–9.

    CAS  Google Scholar 

  293. Voytovich, Y.V., Gitelson, I.I., Ponomaryev, P.I., Sidko, F.Y., Terskov, I.A. & Trubachov, I.N. (1972) Autotrophic growth of hydrogen bacteria in continuous culture. Z. Allg. Mikrobiol. 12: 69–73.

    Article  CAS  Google Scholar 

  294. Vollbrecht, D. (1980) Oxygen deficiency and excretion of metabolites by strictly aerobic bacteria. Biotechnol. Lett 2: 49–54.

    Article  CAS  Google Scholar 

  295. Ti, S.Y., Fukui, T., Saito, T., Okamoto, Y., Narikawa, T., Koide, K., Tomita, K., Takemasa, T. & Masamune, S. (1986) Degradation of poly(3-hydroxybutyrate) by poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalis. Biochem. Biophys. Acta 880: 46–53.

    Article  Google Scholar 

  296. Bogensberger, B. & Braunegg, G. (1987) Kinetics of poly-D(-)-3hydroxybutyrate (PHB) accumulation in Alcaligenes latus- electron microscopical studies of the granula. Proc. 4th Eur. Congress Biotechnol. Vol. 3, 430.

    Google Scholar 

  297. Palleroni, N.J. & Palleroni, A.V. (1978) Alcaligenes latus, a new species of hydrogen-utilizing bacteria. Int. J. Syst. Bacteriol. 28: 416–424.

    Article  Google Scholar 

  298. Braunegg, G. & Bogensberger, B. (1985) Zur Kinetik des Wachstums und der Speicherung von Poly-D(-)-3-hydroxybuttersaure bei Alcaligenes latus. Acta Biotechnol. 5: 339–345.

    Article  CAS  Google Scholar 

  299. Malik, K.A., Jung, C., Claus, D. & Schlegel, H.G. (1981) Nitrogen fixation by the hydrogen-oxidizing bacterium Alcaligenes latus. Arch. Microbiol. 129: 254–256.

    Article  CAS  Google Scholar 

  300. Yoneda, M. & Kondo, M. (1959) Studies on poly-β-hydroxybutyrate in bacterial spores. I. Existence of poly-β-hydroxybutyrate in mature spores of a strain of Bacillus cereus and its relation to the acid-fast stainability. Biken J. 2: 247–258.

    CAS  Google Scholar 

  301. Vries, W. de Ras, J., Stam, H., Van Vlerken, M.M., Hilgert, U., Bruijn, F.J. de & Stouthamer, A.H. (1988) Isolation and characterization of hydrogenasenegative mutants of Azorhizobium caulinodans ORS 571. Arch. Microbiol. 150: 595–599.

    Article  Google Scholar 

  302. Berg, R.H., Vasil, V. & Vasil, J. (1979) The biology of Azospirillum sugarcane association. II. Protoplasma 101: 143–163.

    Article  Google Scholar 

  303. Sadasivan, L. & Neyra, C.A. (1985) Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. J. Bacteriol. 163: 716–723.

    CAS  Google Scholar 

  304. Nur, I., Okon, Y. & Henis, Y. (1982) The role of oxygen concentration in the synthesis of carotenoids, poly-β-hydroxybutyrate and succinate oxidase in continuous cultures of Azospirillum. Isr. J. Bot. 31: 221–227.

    CAS  Google Scholar 

  305. Nur, I., Okon, Y. & Henis, Y. (1982) Effect on dissolved oxygen tension on production of carotenoids, poly-β-hydroxybutyrate, succinate oxidase, and superoxide dismutase by Azospirillum brasilense Cd grown in continuous culture. J. Gen. Microbiol. 128: 2937–2943.

    CAS  Google Scholar 

  306. Tal, S., Smirnoff, P. & Okon, Y. (1990) Purification and characterization of D(-)-β-hydroxybutyrate dehydrogenase from Azospirillum brasilense. Can. J. Gen. Microbiol. 136: 546–649.

    Google Scholar 

  307. Tal, S., Smirnoff, P. & Okon, Y. (1990) The regulation of poly-β-hydroxybutyrate metabolism in Azospirillum brasilense during balanced growth and starvation. J. Gen. Microbiol, 136: 1191–1196.

    Article  CAS  Google Scholar 

  308. Papen, H. & Werner, D. (1980) Biphasic nitrogenase activity in Azospirillum brasilense in long lasting batch culture. Arch Microbiol. 128: 209–214

    Article  CAS  Google Scholar 

  309. Papen, H. & Werner, D. (1982) Organic acid utilization, succinate excretion and encystation during biphasic nitrogenase activity in Azospirillum brasilense under microaerobic conditions. Experientia, Suppl. 42: 75–91.

    Article  CAS  Google Scholar 

  310. Tal, S. & Okon, Y. (1985) Production of the reserve material poly0-hydroxybutyrate and its function in Azospirillum brasilense. Can J. Microbiol. 31: 608–613.

    Article  CAS  Google Scholar 

  311. Tanaka, G. (1982) Intrinsic viscosity and friction coefficient of flexible polymers. Macromolecules 15: 1028–1031.

    Article  CAS  Google Scholar 

  312. Bleakley, B.H., Gaskins, M.H., Hubbell, D.H. & Zam, S.G. (1988) Floc formation by Azospirillum lipoferum grown on poly-β-hydroxybutyrate. Appl. Environ. Microbiol. 54: 2986–2995.

    CAS  Google Scholar 

  313. Volpon, A.G.T., De-Polli, H. & Doebereiner, J. (1981) Physiology of nitrogen fixation in Azospirillum lipoferum Br 17 (ATCC 29 709). Arch. Microbiol. 128: 371–375.

    Article  CAS  Google Scholar 

  314. Stockdale, H., Ribbons, D.W. & Dawes, E.A. (1965) A survey of the distribution of poly-β-hydroxybutyrate in Azotobacter and related genera. J. Gen. Microbiol. 41: xviii.

    Google Scholar 

  315. Sillman, C.E. & Casida, L.E. Jr. (1986) Cyst formation versus poly-β-hydroxybutyric acid accumulation in Azotobacter. Soil Biol. Biochem. 18: 23–28.

    Article  CAS  Google Scholar 

  316. Stockdale, H., Ribbons, D.W. & Dawes, E.A. (1968) Occurrence of poly-β-hydroxybutyrate in the Azotobacteriaceae. J. Bacteriol. 95: 1798–1803.

    CAS  Google Scholar 

  317. Sobek, J.M., Charba, J.F. & Foust, W.N. (1966) Endogenous metabolism of Azotobacter agilis. J. Bacteriol. 92: 687–695.

    CAS  Google Scholar 

  318. Ward, A.C. & Dawes, E.A. (1973) Disk assay for poly-β-hydroxybutyrate. Analyt. Biochem. 52: 607–613.

    Article  CAS  Google Scholar 

  319. Carter, I.S. & Dawes, E.A. (1979) Effect of oxygen concentration and growth rate on glucose metabolism, poly-β-hydroxybutyrate biosynthesis and respiration of Azotobacter beijerinckii. J. Gen. Microbiol. 110: 393–400.

    Article  CAS  Google Scholar 

  320. Ritchie, G.A.F. & Dawes, E.A. (1969) The non-involvement of acyl-carrier protein in poly-β-hydroxybutyric acid biosynthesis in Azotobacter beijerinckii. Biochem. J. 112: 803–805.

    Article  CAS  Google Scholar 

  321. Ritchie, G.A.F., Dawes, E.A. & Senior, P.J. (1971) The purification and characterization of acetoacetyl-coenzyme A reductase from Azotobacter beijerinckii. Biochem. J. 121: 309–316.

    Article  CAS  Google Scholar 

  322. Jackson, F.A. & Dawes, E.A. (1976) Regulation of the tricarboxylic acid cycle and poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii grown under nitrogen or oxygen limitation. J. Gen. Microbiol. 97: 303–312.

    Article  CAS  Google Scholar 

  323. Senior, P.J. & Dawes, E.A. (1970) Glyceraldehyde-3-phosphate dehydrogenase of Azotobacter beijerinckii and its possible significance in poly-β-hydroxybutyrate biosynthesis. Biochem. J. 119: 38.

    Article  Google Scholar 

  324. Senior, P.J. & Dawes, E.A. (1973) The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem. J. 134: 225–238.

    Article  CAS  Google Scholar 

  325. Senior, P.J. & Dawes, E.A. (1971) Role and regulation of poly-β-hydroxybutyrate synthesis in Azotobacter beijerinckii. Biochem. J. 123: 29.

    Article  Google Scholar 

  326. Senior, P.J. & Dawes, E.A. (1971) PHB-biosynthesis and regulation of glucose metabolism in Azotobacter beijerinckii. Biochem. J. 125: 55–66.

    Article  CAS  Google Scholar 

  327. Senior, P.J., Beech, G.A., Ritchie, G.F. & Dawes, E.A. (1972) The role of oxygen limitation in the formation of poly-β-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii. Biochem. J. 128: 1193–1201.

    Article  CAS  Google Scholar 

  328. Ward, A.C., Rowley, B.I. & Dawes, E.A. (1977) Effect of oxygen and nitrogen limitation on poly-β-hydroxybutyrate biosynthesis in ammonium grown Azotobacter beijerinckii. J. Gen. Microbiol. 102: 61–68.

    Article  CAS  Google Scholar 

  329. Lemoigne, M. & Girard, H. (1943) Reserves lipidiques β-hydroxybutyriques chez Azotobacter chroococcum. C. r. Acad. Sci., Paris 217: 557–558.

    CAS  Google Scholar 

  330. Nuti, M.P., De Bertoldi, M. & Lepidi, A.A. (1972) Influence of phenylacetic acid on poly-β-hydroxybutyrate (PHB) polymerization and cell elongation in Azotobacter chroococcum. Can. J. Microbiol. 18: 1257–1261.

    Article  CAS  Google Scholar 

  331. Ostle, A.G. & Holt, J.G. (1982) Nile Blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl. Environ. Microbiol. 44: 238–241.

    CAS  Google Scholar 

  332. Dalton, H. & Postgate, J.R. (1969) Growth and physiology of Azotobacter chroococcum in continuous culture. J. Gen. Microbiol. 56: 307–319.

    Article  CAS  Google Scholar 

  333. Forsyth, W.G.C., Hayward, A.C. & Roberts, J.B. (1958) Occurrence of poly-β-hydroxybutyric acid in aerobic gram-negative bacteria. Nature 182: 800–801.

    Article  CAS  Google Scholar 

  334. Giles, K.L. (1975) The transfer of nitrogen fixing ability to a eukaryote cell. Cytobios 14: 49–61.

    CAS  Google Scholar 

  335. Giles, K.L. (1976) Uptake and continued metabolic activity of Azotobacter within fungal protoplasts. Science 193: 1125–1126.

    Article  CAS  Google Scholar 

  336. Lemoigne, M. (1946) Fermentation β-hydroxybutyrique. Helv. Chim. Acta 29: 1303–1306.

    Article  CAS  Google Scholar 

  337. Page, W.J. (1990) Production of poly-β-hydroxybutyrate by Azotobacter vinelandii UWD in beet molasses culture at high aeration. In Novel Biodegradable Microbial Polymers (ed. Dawes. E.A.). pp. 423–424. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  338. Reusch, R.N. & Sadoff, H.L. (1981) Lipid metabolism during encystment of Azotobacter vinelandii. J. Bacteriol. 145: 889–895.

    CAS  Google Scholar 

  339. Barham, P., Keller, A., Otun, E. & Holmes, P. (1984) Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J. Material Sci. 19: 2781–2794.

    Article  CAS  Google Scholar 

  340. Lin, L.P. & Sadoff, H.L. (1968) Encystment and polymer production by Azotobacter vinelandii in the presence of β-hydroxybutyrate. J. Bacteriol. 95: 2336–2343.

    CAS  Google Scholar 

  341. Lin, P., Pankratz, S. & Sadoff, H.L. (1978) Ultrastructural and physiological changes occurring upon germination and outgrowth of Azotobacter vinelandii cysts. J. Bacteriol. 135: 641–646.

    CAS  Google Scholar 

  342. Stevenson, L.H. & Socolofsky, M.D. (1966) Cyst formation and poly(β-hydroxybutyric acid) accumulation in Azotobacter. J. Bacteriol. 91: 304–310.

    CAS  Google Scholar 

  343. Tsai, J.C., Aladegbami, S.L. & Vela, G.R. (1979) Phosphate-limited culture of Azotobacter vinelandii. J. Bacteriol. 139: 639–645.

    CAS  Google Scholar 

  344. Aladegbami, S.L., Tsai, J.C. & Vela, G.R. (1979) Adenylate energy charge of Azotobacter vinelandii during encystment. Curr. Microbiol. 2: 327–329.

    Article  CAS  Google Scholar 

  345. De La Rubia, T., Gonzalez-Lopez, J., Moreno, J., Martinez-Toledo, M.V. & Ramos-Cormenzana, A. (1987) Adenine nucleotide contents and energy charge of Azotobacter vinelandii grown at low phosphate concentration. Arch. Microbiol. 147: 354–357.

    Article  Google Scholar 

  346. De La Rubia, T., Gonzalez-Lopez, J., Martinez-Toledo, M.V., Moreno, J. & Ramos-Cormenzana, A. (1986) Adenine nucleotide content and energy charge in dry cells and cysts of Azotobacter vinelandii. FEMS Microbiol. Lett. 36: 111–114.

    Article  Google Scholar 

  347. Jurtshuk, P., Manning, S. & Barrerea, C.R. (1968) Isolation and purification of the D(-)β-hydroxybutyric dehydrogenase of Azotobacter vinelandii. Can. J. Microbiol. 14: 775–783.

    Article  CAS  Google Scholar 

  348. Martinez-Toledo, M.V., Gonzalez-Lopez, J., Salermon, V., De La Rubia, T., Ballesteros, F. & Ramos-Cormenzana, A. (1986) Properties of Azotobacter vinelandii in phosphate-limited batch cultures. Folia Microbiol. 31: 154–163.

    Article  CAS  Google Scholar 

  349. Mola, A.H. de (1975) Molecular weight distribution of native poly(D-β-hydroxybutyric) acid. Makromol. Chemie 176: 2655–2667.

    Google Scholar 

  350. Page, W.J. (1989) Production of poly-β-hydroxybutyrate by Azotobacter vinelandii strain UWD during growth on molasses and other complex carbon sources. Appl. Microbiol. Biotechnol. 31: 329–333.

    CAS  Google Scholar 

  351. Stevenson, L.H. & Socolofsky, M.D. (1973) Role of poly-β-hydroxybutyric acid in cyst formation by Azotobacter. Ant. v. Leeuwenhoek; J. Microbiol. Serol. 39: 341–350.

    CAS  Google Scholar 

  352. Murrell, W.G. (1967) The biochemistry of the bacterial endospore. Adv. Microb. Physiol. 1: 133–251.

    Article  CAS  Google Scholar 

  353. Lemoigne, M., Delaporte, B. & Groson, M. (1944) Valeur du test des lipides β-hydroxybutyriques pour la caracterisation des especes. Annal. Inst. Pasteur 70: 224–233.

    CAS  Google Scholar 

  354. Blackwood, A.C. & Epp, A. (1957) Identification of β-hydroxybutyric acid in bacterial cells by infrared spectrophotometry. J. Bacteriol. 74: 266–267.

    CAS  Google Scholar 

  355. Ottaway, J.H. (1962) A preparation of D(-)-β-hydroxybutyric acid. Biochem. J. 84: 11–12.

    Article  CAS  Google Scholar 

  356. Dunlop, W. & Robards, A. (1973) Ultrastructural study of poly-β-hydroxybutyrate granules from Bacillus cereus. J. Bacteriol. 114: 1271–1280.

    CAS  Google Scholar 

  357. Clifton, C.E. & Sobek, J.M. (1961) Endogenous respiration of Bacillus cereus. J. Bacteriol. 82: 252–256.

    CAS  Google Scholar 

  358. Thompson, E.D. & Nakata, H.M. (1973) Characterization and partial purification of β-hydroxybutyrate dehydrogenase from sporulating cells of Bacillus cereus T. Can. J. Microbiol. 19: 673–677.

    Article  CAS  Google Scholar 

  359. Macrae, R.M. & Wilkinson, J.F. (1958) Poly-β-hydroxybutyrate metabolism in washed suspensions of Bacillus cereus and Bacillus megaterium. J. Gen. Microbiol. 18: 210–222.

    Article  Google Scholar 

  360. Ram, B.P. & Rana, R.S. (1978) Effects of phenylglyoxal on the growth and sporulation of Bacillus cereus T. Ind. J. Exp. Biol. 16: 170–173.

    CAS  Google Scholar 

  361. Kondo, M., Yoneda, M., Nishi, Y. & Fukai, K. (1961) Studies on polyfi-hydroxybutyrate in bacterial spores. II. Localization of poly-β-hydroxybutyrate in relation to the morphological structure of mature spores of Bacillus cereus. Bikens J. 4: 41–49.

    CAS  Google Scholar 

  362. Kominek, L.A. & Halvorson, H.O. (1965) Metabolism of poly-β-hydroxybutyrate and acetoin in Bacillus cereus. J. Bacteriol. 90: 1251–1259.

    CAS  Google Scholar 

  363. Kennedy, R.S., Malveaux, F.J. & Cooney, J.J. (1971) Effects of glutamic acid on sporulation of Bacillus cereus and on spore properties. Can. J. Microbiol. 17: 511–519.

    Article  CAS  Google Scholar 

  364. Williamson, D.H. & Wilkinson, J.F. (1958) The isolation and estimation of poly-β-hydroxybutyrate inclusions of Bacillus species. J. Gen. Microbiol. 19: 198–209.

    Article  CAS  Google Scholar 

  365. Pfister, R.M. & Lundgren, D.G. (1964) Electron microscopy of polyribosomes within Bacillus cereus. J. Bacteriol. 88: 1119–1129.

    CAS  Google Scholar 

  366. Remsen, C.C. (1966) The fine structure of frozen-etched Bacillus cereus spores. Arch. Microbiol. 54: 266–275.

    CAS  Google Scholar 

  367. Mynbayeva, B.N., Abdrashitova, S.A. & Ilyaletdinov, A.N. (1987) The ultrastructural organization of Pseudomonas putida cells oxidizing arsenite. Mikrobiologiya 56: 95–99.

    Google Scholar 

  368. Vogt, J.C., McDonald, W.C. & Nakata, H.M. (1967) Effect of intracellular poly-β-hydroxybutyrate on the ultraviolet sensitivity of Bacillus cereus. Radiat. Res. 30: 140–147.

    Article  CAS  Google Scholar 

  369. Nam, D.H. & Ryu, D.D.Y. (1985) Relationship between butirosin biosynthesis and sporulation in Bacillus circulans. Antimicrob. Agents Chemother. 27: 798–801.

    Article  CAS  Google Scholar 

  370. Hofsten, W.B. & Baird, G.D. (1962) Fractionation of cell constituents of Bacillus megaterium in a polymer two-phase system. Biotechnol. Bioeng. 6: 403–410.

    Article  Google Scholar 

  371. Kepez, A. & Peaud-Lenoel, C. (1952) Sur les proprietes et la constitution des lipides β-hydroxybutyriques. C. R. Acad. Sci. 234: 756–757.

    Google Scholar 

  372. Law, J.H. & Slepecky, R.A. (1961) Assay of poly-β-hydroxybutyric acid. J. Bacteriol. 82: 33–36.

    CAS  Google Scholar 

  373. Lemoigne, M. & Roukhelman, N. (1940) Fermentation β-hydroxybutyrique. Caracterisation et evolution des produits de deshydratation et de polymerisation de l’acide β-hydroxybutyrique. Annal. Ferment. 5: 527–536.

    Google Scholar 

  374. Lernoigne, M., Grelet, N., Crosan, U. & Le Treis, M. (1945) Formation de lipide β-hydroxybutyrique aux epens du glucose par le Bacillus megatherium. Donnies quantitatives. Bull. Soc. Chim. Biol. Paris 27: 90–95.

    Google Scholar 

  375. Lemoigne, M., Milhaud, G. & Croson, M. (1949) Sur le metabolisme lipidique du Bacillus megaterium. Bull. Soc. Chim. Biol. 31: 1587–1591.

    CAS  Google Scholar 

  376. Merrick, J.M. & Doudoroff, M. (1961) Enzymatic synthesis of poly-β-hydroxybutyric acid in bacteria. Nature 189: 890–892.

    Article  CAS  Google Scholar 

  377. Norris, K.P. & Greenstreet, J.E.S. (1958) On the infrared absorption spectrum of Bacillus megaterium. J. Gen. Microbiol. 19: 566–580.

    Article  CAS  Google Scholar 

  378. Sakharova, Z.V. (1977) Chemical composition of the cells of a chemostat culture of Bacillus megaterium at alkaline pH values. Mikrobiologiya 46: 580–582.

    CAS  Google Scholar 

  379. Scott, C.C.L. & Finnerty, W.R. (1976) A comparative analysis of the ultrastructure of hydrocarbon-oxidizing micro-organisms. J. Gen. Microbiol. 94: 342–350.

    Article  CAS  Google Scholar 

  380. Slepecky, R.A. & Law, J.H. (1960) A rapid spectrophotometric assay of alpha, beta-unsaturated acids and β-hydroxy acids. Analyt. Chem. 32: 1697–1699.

    Article  CAS  Google Scholar 

  381. Weibull, C. (1953) Characterization of the protoplasmic constituents of Bacillus megaterium. J Bacteriol 66: 696–702.

    CAS  Google Scholar 

  382. White, P.J. & Gilvarg, C. (1977) A teichuronic acid containing rhamnose from cell walls of Bacillus megaterium. Biochemistry 16: 2428–2435.

    Article  CAS  Google Scholar 

  383. Yan, L.-P. & Hitchins, A.D. (1980) Comparative macromolecular composition of filaments and rods of a Bacillus megaterium thermoconditional morphological mutant. J. Bacteriol. 144: 454–456.

    CAS  Google Scholar 

  384. Doi, Y., Tamaki, A., Kunioka, M. & Soga, K. (1986) Proton and carbon-13 NMR analysis of poly(β-hydroxybutyrate) isolated from Bacillus megaterium. Macromolecules 19: 1274–1276.

    Article  CAS  Google Scholar 

  385. Bohlken, G. (1969) Zur Speicherung von Reservestoffen in Bacillus megaterium. I. Untersuchungen an Wildstämmen. Zbl. Bakt. Parasitenkde. Abt. II, 123: 7–15.

    CAS  Google Scholar 

  386. Ellar, D., Lundgren, D.G., Okamura, K. & Marchessault, R.H. (1968) Morphology of poly-β-hydroxybutyrate granules. J. Mol. Biol. 35: 389–502.

    Article  Google Scholar 

  387. Freer, J.H. & Levinson, H.S. (1967) Fine structure of Bacillus megaterium during microcycle sporogenesis. J. Bacteriol. 94: 441–457.

    CAS  Google Scholar 

  388. Rabotnova, I.L., Shul’govskaya, E.M., Pozmogova, I.N., Kuznetsov, L.E., Ibragimova, S.I. & Ryabchuk, V.A. (1983) Use of rifampicin for directed modification of the composition of Bacillus megaterium and Candida utilis cells. Mikrobiologiya 52: 87–93.

    CAS  Google Scholar 

  389. De La Rubia, T., Gonzalez-Lopez, J., Moreno, J., Martinez-Toledo, M.V., Ramos-Cormenzana, A. (1986) Adenine nucleotide and energy charge of Bacillus megaterium during batch growth in low-phosphate medium. FEMS Microbiol. Lett. 35: 5–9.

    Article  Google Scholar 

  390. De la Rubia, T., Gonzalez-Lopez, J., Ballesteros, F. & Ramos-Cormenzana, A. (1986) Growth of Bacillus megaterium in phosphate-limited medium. Folia Microbiol. 31: 98–105.

    Article  Google Scholar 

  391. Gonzalez-Lopez, J., De la Rubia, N.T. & Ramos-Cormenzana, A. (1985) Effect of phosphate limitation on the morphology of Bacillus megaterium. Microbios. Lett. 28: 7–13.

    Article  CAS  Google Scholar 

  392. Macrae, R.M. & Wilkinson, J.F. (1958) The influence of the cultural conditions on poly-β-hydroxybutyrate synthesis in Bacillus megaterium. Proc. R. Phys. Soc. Edinburgh 27: 73–78.

    Google Scholar 

  393. Shaforostova, L.D., Ivanova, I.I., Shul’govskaya, E.M. & Rabotnova, I.L. (1973) Growth of microorganisms during exponential phase. Biotechnol. Bioeng. Symp. 4: 175–187.

    Google Scholar 

  394. Shul’govskaya, E.M., Pozmogova, I.N. & Rabotnova, I.L. (1980) Effect of chloramphenicol, an inhibitor of protein synthesis on the main growth characteristics for continuous and batch cultures of Bacillus megaterium. Mikrobiologiya 49: 893–901.

    CAS  Google Scholar 

  395. Slepecky, R.A. & Law, J.M. (1961) Synthesis and degradation of poly-β-hydroxybutyric acid in connection with sporulation of Bacillus megaterium. J. Bacteriol. 82: 37–42.

    CAS  Google Scholar 

  396. Tinelli, R. (1955) Etude de la biochimie de la sporulation chez Bacillus megaterium. Etude du comportemente d’une souche de B. megaterium asporogene mise dans les conditions de sporulation. Ann. Inst. Pasteur 88, 642–649.

    CAS  Google Scholar 

  397. Wilkinson, J.F. (1963) Carbon and energy storage in bacteria. J. Gen. Microbiol. 32: 171–176.

    Article  CAS  Google Scholar 

  398. Wilkinson, J.F. & Munro, A.L.S. (1967) Influence of growth-limiting conditions on the synthesis of possible carbon and energy-storage polymers in Bacillus megaterium. In Microbial Physiology and Continuous Culture (eds Powell, C., Evans, G.T., Strange, R.E. & Tempest, D.W.), pp. 173–185. HMSO, London.

    Google Scholar 

  399. Yamakawa, T., Aida, K. & Uemura, T. (1966) Spectrophotometric studies on the sporulation of Bacillus megaterium. J. Gen. Appl. Microbiol. 12: 353–359.

    Article  CAS  Google Scholar 

  400. Nickerson, K.W. (1982) Purification of poly-β-hydroxybutyrate by density gradient centrifugation in sodium bromide. Appl. Environ. Microbiol. 43: 1208–1209.

    CAS  Google Scholar 

  401. Nickerson, K.W., Zarnick, W.J. & Kramer, V.C. (1981) Poly-β-hydroxybutyrate parasporal bodies in Bacillus thuringiensis. FEMS Microbiol. Lett. 12: 327–331.

    CAS  Google Scholar 

  402. Wakisaka, Y., Masaki, E. & Nishimoto, Y. (1982) Formation of crystalline δ-endotoxin or poly-β-hydroxybutyric acid granules by asporogenous mutants of Bacillus thuringiensis. Appl. Environ. Microbiol. 43: 1473–1480.

    CAS  Google Scholar 

  403. Pringsheim, E.G. & Wiessner, W. (1963) Minimum requirements for heterotrophic growth and reserve substance in Beggiatoa. Nature 197: 102.

    Article  Google Scholar 

  404. Strohl, W.R. & Larkin, J.M. (1978) Enumeration, isolation and characterization of Beggiatoa from freshwater sediments. Appl. Environ. Microbiol. 36: 755–770.

    CAS  Google Scholar 

  405. Strohl, W.R., Cannon, G.C., Shively, J.M. Guede, H., Hook, L.A., Lane, C.M. & Larkin, J.M. (1981) Heterotrophic carbon metabolism by Beggiatoa alba. J. Bacteriol. 148: 572–583.

    CAS  Google Scholar 

  406. Guede, H., Strohl, W.R. & Larkin, J.M. (1981) Mixotrophic and heterotrophic growth of Beggiatoa alba in continuous culture. Arch. Microbiol. 129: 357–360.

    Article  CAS  Google Scholar 

  407. Becking, J.H. (1974) Nitrogen-fixing bacteria of the genus Beijerinckia. Soil Sci. 118: 196–212.

    Article  CAS  Google Scholar 

  408. Baumann, P., Baumann, L. & Mandel, M. (1971) Taxonomy of marine bacteria: the genus Beneckea. J. Bacteriol. 107: 268–294.

    CAS  Google Scholar 

  409. Reichelt, J.L. & Baumann, P. (1973) Taxonomy of the marine, luminous bacteria. Arch. Microbiol. 94: 283–330.

    Google Scholar 

  410. Ionescu, M.D., Petrovigi, A., Andreescu, V., Mihai, G., Burghellea, B., Marion, M. & Ivan, I. (1983) Poly-β-hydroxybutyrate-type (PHB) inclusions in B. pertussis and their possible implication in toxicity. Arch. Roum. Pathol. Exp. Microbiol. 42: 297–303.

    CAS  Google Scholar 

  411. McDernott, T.R., Griffith, S.M., Vance, C.P. & Graham, P.H. (1988) Carbon metabolism in Bradyrhizobium japonicum bacteroids. FEMS Microbiol. Rev. 63: 327–340.

    Google Scholar 

  412. Suzuki, T., Zahler, W.L. & Emerich, D.W. (1987) Acetoacetyl-CoA thiolase of Bradyrhizobium japonicum bacteroids: purification and properties. Arch. Biochem, Biophys. 254: 272–281.

    Article  CAS  Google Scholar 

  413. Provost, P.J. & Doetsch, R.N. (1962) An appraisal of Caryophanon latum. J. Gen. Microbiol. 28: 547–557.

    Article  CAS  Google Scholar 

  414. Poindexter, J.S. (1981) Oligotrophy. Fast and famine existence. Adv. Microb. Ecol. 5: 63–89.

    Article  CAS  Google Scholar 

  415. Poindexter, J.S. (1964) Biological properties and classification of the Caulobacter group. Bacteriol. Rev. 28: 231–295.

    CAS  Google Scholar 

  416. Poindexter, J.S. & Eley, L.F. (1983) Combined procedure for assays of poly-β-hydroxybutyric acid and inorganic polyphosphate. J. Microbiol. Meth. 1: 1–17.

    Article  CAS  Google Scholar 

  417. Poindexter, J.S. (1984) The role of calcium in stalk development and in phosphate acquisition in Caulobacter crescentus. Arch. Microbiol. 138: 140–152.

    Article  CAS  Google Scholar 

  418. Riley, R.G. & Koldziej, B.J. (1976) Pathway of glucose catabolism in Caulobacter crescentus. Microbios. 16: 219–226.

    CAS  Google Scholar 

  419. Sand, W. & Bock, E. (1982) Effect of carbon and nitrogen sources on the induction of the nitrite oxidizing system and on the PHB-content in Nitrobacter agilis K1. Mitt. Inst. Allg. Bot. Hamburg 18: 61–70.

    CAS  Google Scholar 

  420. Van Gemerden, H. (1968) ATP generation by Chromatium in darkness. Arch. Microbiol. 64: 118–124.

    Google Scholar 

  421. Kran, G., Schlote, F.W. & Schlegel, H.G. (1963) Cytologische Untersuchungen an Chromatium okenii Perty. Naturwissenschaften 50: 728–730.

    Article  Google Scholar 

  422. Schlegel, H.G. (1962) Die Speicherstoffe von Chromatium okenii. Arch. Mikrobiol. 42: 110–116.

    Article  CAS  Google Scholar 

  423. Madigan, M.T. (1986) Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae. Int. J. Syst. Bacteriol. 36: 222–227.

    Article  CAS  Google Scholar 

  424. Hurlbert, R.E. (1967) Effect of oxygen on viability and substrate utilization in Chromatium. J. Bacteriol. 93: 1346–1352.

    CAS  Google Scholar 

  425. Nicolay, K., Van Gemerden, H., Hellingwerf, K.J., Konings, W.N. & Kaptein, R. (1983) In vivo 31P and 13C nuclear magnetic resonance studies of acetate metabolism in Chromatium vinosum. J. Bacteriol. 155: 634–642.

    CAS  Google Scholar 

  426. Dias, F.F. & Bhat, J.V. (1963) Accumulation of poly-β-hydroxybutyric acid and iodophilic material by the dominant activated sludge bacteria. Curr. Sci. 32: 501–502.

    CAS  Google Scholar 

  427. Delafield, F.P., Doudoroff, M., Palleroni, N.J., Lusty, C.J. & Contopoulos, R. (1965) Decomposition of poly-β-hydroxybutyrate by Pseudomonads. J. Bacteriol. 90: 1455–1466.

    CAS  Google Scholar 

  428. Stanier, R.Y., Palleroni, N.J. & Doudoroff, M. (1966) The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43: 159–271.

    Article  CAS  Google Scholar 

  429. Galinski, E.A. & Herzog, R.M. (1990) The role of trehalose as a substitute for nitrogen-containing compatible solutes (Ectothiorhodospira halochloris). Arch. Microbiol. 153: 607–613.

    Article  CAS  Google Scholar 

  430. Wang, W.S. & Lundgren, D.G. (1969) Poly-β-hydroxybutyrate in the chemilithotrophic bacterium Ferrobacillus ferrooxidans. J. Bacteriol. 97: 947–950.

    CAS  Google Scholar 

  431. Tezuka, Y. (1969) Cation-dependent flocculation in a Flavobacterium species predominant in activated sludge. Appl. Microbiol. 17: 222–226.

    CAS  Google Scholar 

  432. Lillo, J.G., Rodriguez-Valera, F. (1990) Effects of culture conditions on poly(β-hydroxybutyric acid) production by Haloferax mediterranei. Appl. Environ. Microbiol. 56: 2517–2521.

    Google Scholar 

  433. Elsohly, M.A., Elsayed, A.M. & Soliman, F.M. (1985) β-Hydroxybutyric acid polymer from Hydroclathrus clathratus. J. Nat. Prod. 48: 809–810.

    Article  CAS  Google Scholar 

  434. Heptinstall, J., Rittenhouse, H.G., McFadden, B.A. & Shumway, L.K. (1972) Effect of growth conditions on morphology of Hydrogenomonas facilis and on yield of a phospholipoprotein. J. Bacteriol. 110: 363–367.

    CAS  Google Scholar 

  435. Hirsch, P. & Conti, S.F. (1964) Biology or budding bacteria. Arch. Mikrobiol. 48: 339–357.

    Article  CAS  Google Scholar 

  436. Nikitin, D.I., Pitryuk, I.A., Zagreba, E.D., Ginovska, M.K., Yacobson, Y.O. & Fetisova, M.B. (1986) Hyphomicrobium cells growing for a long time in poor media and studied by infrared spectrophotometry. Mikrobiologiya 55: 648–651.

    CAS  Google Scholar 

  437. Vedenina, I.Y. & Lebedinskii, A.V. (1983) Effect of copper on the composition of denitrification products in Hyphomicrobium. Mikrobiologiya 52, 917–923.

    CAS  Google Scholar 

  438. Graezer-Lampart, S.D., Egli, T. & Hamer, G. (1986) Growth of Hyphomicrobium ZV620 in the chemostat: regulation of ammonium-assimiliating enzymes and cellular composition. J. Gen. Microbiol. 132: 3337–3347.

    CAS  Google Scholar 

  439. Semenov, A.M., Ganzlikova, A. & Tenov, N. (1989) Poly-β-hydroxybutyrate accumulation by some oligotrophic polyprostecate bacteria. Microbiology (Moscow) 58: 923–926.

    CAS  Google Scholar 

  440. Kuhn, D.A. & Starr, M.P. (1965) Clonal morphogenesis of Lampropedia hyalina. Arch. Mikrobiol. 52: 360–375.

    Article  CAS  Google Scholar 

  441. Chandler, F.W., Blackmon, J.A., Hieklin, M.D., Cole, R.M. & Callaway, C.S. (1979) Ultrastructure of the agent of Legionella disease in the human lung. Am. J Clin Pathol.

    Google Scholar 

  442. Adams, L.F. & Ghiorse, W.C. (1985) Influence of manganese on growth of a sheathless strain of Leptothrix discophora. Appl. Environ. Microbiol. 49: 556–562.

    CAS  Google Scholar 

  443. Adams, L.F. & Ghiorse, W.C. (1986) Physiology and ultrastructure of Leptothrix discophora SS-1. Arch. Microbiol. 145: 126–135.

    Article  CAS  Google Scholar 

  444. Alizade, M.A. & Gaede, K. (1977) Chirality of the hydrogen transfer of NAD catalyzed by (3R) hydroxybutyrate dehydrogenase from Pseudomonas lemoignei. Z. Naturforsch. 32c: 874–876.

    CAS  Google Scholar 

  445. Stokes, J.L. & Parson, W.L. (1968) Role of poly-β-hydroxybutyrate in survival of Sphaerotilus discophorus during starvation. Can. J. Microbiol. 14, 785–789.

    Article  CAS  Google Scholar 

  446. Stokes, J.L. & Powers, M.T. (1967) Stimulation of poly(β-hydroxybutyrate) oxidation in Sphaerotilus discophorus by manganese and magnesium. Arch. Mikrobiol. 59: 295–301.

    Article  CAS  Google Scholar 

  447. Dunstan, P.M. & Anthony, C. (1973) Microbial metabolism of C1 and C2 compounds. The role of acetate during growth of Pseudomonas AM1 on C1 compounds, ethanol and β-hydroxybutyrate. Biochem. J. 132: 797–801.

    Article  CAS  Google Scholar 

  448. Suzuki, T., Yamane, T. & Shimizu, S. (1986) Mass production of poly-β-hydroxybutyric acid by fully automatic fed-batch culture of methylotroph. Appl. Microbiol. Biotechnol. 23: 322–329.

    CAS  Google Scholar 

  449. Suzuki, T., Yamane, T. & Shimizu, S. (1986) Kinetics and effect of nitrogen source feeding on production of poly-β-hydroxybutyric acid by fed-batch culture. Appl. Microbiol. Biotechnol. 24: 366–369.

    Article  CAS  Google Scholar 

  450. Suzuki, T., Yamane, T. & Shimizu, S. (1986) Mass production of polyfl-hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding. Appl. Microbiol., Biotechnol. 24: 370–374.

    Article  CAS  Google Scholar 

  451. Choi, J.H., Kim, J.H., Daniel, M. & Lebeault, J.M. (1989) Optimization of growth medium and poly-beta-hydroxybutyric acid production from methanol in Methylobacterium organophilum. Korean J. Appl. Microbiol. Biotechnol. 17: 392–396.

    CAS  Google Scholar 

  452. Slabova, O.I., Nikitin, D.I. & Zagreba, E.D. (1990) Poly-β-hydroxybutyric acid utilization during the oxidation of gas substrates and their mixtures by the cells of Methylobacterium organophilum. Microbiology 59: 938–941.

    Google Scholar 

  453. Malashenko, Y.R. (1976) Isolation and characterization of new species (thermophilic and thermotolerant ones) of methane-utilizers. In Symposium on Microbial Production and Utilisation of Gases (H 2 CH 4 , CO) (eds Schlegel, G., Gottschalk, G. & Pfennig, N.), pp. 293–300. Göttingen, Akademie der Wissenschaften, Göttingen.

    Google Scholar 

  454. Asenjo, J.A. & Suk, J.S. (1986) Microbial conversion of methane into poly-β-hydroxybutyrate (PHB): growth and intracellular product accumulation in a type II methanotroph. J. Ferment. Technol. 64: 271–278.

    Article  CAS  Google Scholar 

  455. Asenjo, J.A. & Suk, J.S. (1986) Kinetics and models for the bioconversion of methane into an intracellular polymer, poly-β-hydroxybutyrate (PHB). Biotechnol. Bioeng. Symp. 15: 225–234.

    CAS  Google Scholar 

  456. Whittenbury, R., Davies, S.L. & Davey, J.F. (1970) Exospores and cysts formed by methane-utilising bacteria. J. Gen. Microbiol. 61: 219–226.

    Article  CAS  Google Scholar 

  457. Kallio, R.E. & Harrington, A.A. (1960) Sudanophilic granules and lipid of Pseudomonas methanica. J. Bacteriol. 80: 321–324.

    CAS  Google Scholar 

  458. Harrington, A.A. & Kallio, R.E. (1960) Oxidation of methanol and formaldehyde by Pseudomonas methanica. Can. J. Microbiol. 6: 1–7.

    Article  CAS  Google Scholar 

  459. Weaver, T.L., Patrick, M.A. & Dugan, P.R. (1975) Whole-cell and membrane lipids of the methylotrophic bacterium Methylosinus trichosporium. J. Bacteriol. 124: 602–605.

    CAS  Google Scholar 

  460. Best, D.J. & Higgins, I.J. (1981) Methane-oxidizing activity and membrane morphology in a methanol-grown obligate methanotroph, Methylosinus trichosporium OB36. J. Gen. Microbiol. 125: 73–84.

    CAS  Google Scholar 

  461. Thomson, A.W., O’Neill, J.G. & Wilkinson, J.F. (1976) Acetone production by methylobacteria. Arch. Microbiol. 109: 243–246.

    Article  CAS  Google Scholar 

  462. Hazeu, W. & Steenis, P.J. (1970) Isolation and characterization of two vibrio shaped methane oxidizing bacteria. Ant. v. Leeuwenhoek, J. Microbiol. Serol. 36: 67–72.

    Article  CAS  Google Scholar 

  463. Sierra, G. & Gibbons, N.E. (1963) Sodium requirement of poly-β-hydroxybutyric acid depolymerase of Micrococcus denitrificans. Can. J. Microbiol. 9: 491–497.

    Article  Google Scholar 

  464. Kates, M., Sehgal, S.N. & Gibbons, N.E. (1961) The lipid composition of Micrococcus halodenitrificans as influenced by salt concentration. Can. J. Microbiol. 7: 427–435.

    Article  CAS  Google Scholar 

  465. Smithies, W.R., Gibbons, N.E. & Bayley, S.T. (1955) The chemical composition of the cell and cell wall of some halophilic bacteria. Can. J. Microbiol. 1: 605–613.

    Article  CAS  Google Scholar 

  466. Sierra, G. & Gibbons, N.E. (1962) Production of poly-β-hydroxybutyric acid granules in Micrococcus halodenitrificans. Can. J. Microbiol. 8: 249–253.

    Article  CAS  Google Scholar 

  467. Sierra, G. & Gibbons, N.E. (1962) Role and oxidation pathway of polyβ-hydroxybutyric acid in Micrococcus halodenitrificans. Can. J. Microbiol. 8: 255–269.

    Article  CAS  Google Scholar 

  468. Braunegg, G. (1979) Speicherung von PHB in Mycoplana rubra Stamm R14. Österr. Chem. Zeitschrift. 80: 217.

    Google Scholar 

  469. Tobback, P. and Landelout, H. (1965) Poly-β-hydroxybutyric acid in Nitrobacter. Biochim. Biophys. Acta 97: 589–590.

    Article  CAS  Google Scholar 

  470. Garretson, A.L. & San Clemente, C.L. (1977) Inability of Nitrobacter agilis to grow heterotrophically on acetate. Dev. Ind. Microbiol. 19: 541–552.

    CAS  Google Scholar 

  471. Pope, L.M., Hoare, D.S. & Smith, A.J. (1969) Ultrastructure of Nitrobacter agilis growth under autotrophic and heterotrophic conditions. J. Bacteriol. 97: 936–939.

    CAS  Google Scholar 

  472. Tsien, H.C., Lambert, R. & Laudelout, H. (1968) Fine structure and the localization of the nitrite oxidizing system in Nitrobacter winogradsky. Ant. v. Leeuwenhoek 34: 483–494.

    Google Scholar 

  473. Van Gool, A.P., Lambert, R. & Laudelout, H. (1969) The fine structure of frozen etched Nitrobacter cells. Arch. Microbiol. 69: 281–293.

    Google Scholar 

  474. Van Gool, A.P., Tobback, P.P. & Fischer, I. (1971) Autotrophic growth and synthesis of reserve polymers in Nitrobacter winogradskyi. Arch. Microbiol. 76: 252–264.

    Google Scholar 

  475. Emeruwa, A.C. (1981) Isolation and metabolism of glycogen and poly-betahydroxybutyrate in Nocardia asteroides at different development stages. Ann. Microbiol. 132B: 13–21.

    CAS  Google Scholar 

  476. Stal, L.J., Heyer, H. & Jacobs, G. (1990) Occurrence and role of polyhydroxyalkanoate in the cyanobacterium Oscillatoria limosa. In Novel Biodegradable Microbial Polymers, pp. 435–438. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  477. Kalacheva, G.S., Vysotskii, E.S., Rodicheva, E.K. & Fish, A.M. (1981) Lipids of the luminescent bacterium Photobacterium mandapamensis. Mikrobiologiya 50: 79–83.

    CAS  Google Scholar 

  478. Ebergardt, A. & Ruoso, G. (1971) Quantitative analysis of the phospholipids of some marine bioluminescent bacteria. Lipids 6: 410–414.

    Article  Google Scholar 

  479. Doudoroff, M. & Stanier, R.Y. (1959) Role of poly-β-hydroxybutyric acid in the assimilation of organic carbon by bacteria. Nature 183: 1440–1442.

    Article  CAS  Google Scholar 

  480. Morris, M.B. & Roberts, J.B. (1959) A group of Pseudomonads able to synthesize poly-β-hydroxybutyric acid. Nature 183: 1538–1539.

    Article  CAS  Google Scholar 

  481. Jacob, G.S., Garbow, J.R. & Schaefer, J. (1986) Direct measurement of poly(β-hydroxybutyrate) in a pseudomonad by solid-state carbon-13 NMR. J. Biol. Chem. 261: 16785–16787.

    CAS  Google Scholar 

  482. Timm, A. & Steinbüchel, A. (1990) Formation of poly(3-hydroxyalkanoates) by wild type and recombinant strains of Pseudomonas aeruginosa and other fluorescent pseudomonads. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 445–446. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  483. Braunegg, G. & Kornetti, L. (1984) Pseudomonas 2F: kinetics of growth and accumulation of poly-D(-)-3-hydroxybutyric acid (Poly-HB). Biotechnol. Lett. 6: 825–829.

    Article  CAS  Google Scholar 

  484. Jones, K.L. & Rhodes-Roberts, M.E. (1981) The survival of marine bacteria under starvation conditions. J. Appl. Bacteriol. 50: 247–258.

    Article  CAS  Google Scholar 

  485. Zevenhuizen, L.P.T.M. & Ebbink, A.G. (1974) Interrelations between glycogen, poly-β-hydroxybutyric acid, and lipids during accumulation and subsequent utilization in a Pseudomonas. Ant. v. Leeuwenhoek J. Microbiol. Serol. 40: 103–120.

    Article  CAS  Google Scholar 

  486. Calcott, P.H., Zaborowski, C., Levine, W.E. & Truong, N.-H. (1979) Drug resistance plasmid (pPL1) mediated changes in the susceptibility of Pseudomonas aeruginosa to stress. FEMS Microbiol. Lett. 6: 75–80.

    Article  CAS  Google Scholar 

  487. Chowdhury, A.A. (1963) Poly-β-hydroxybuttersäure abbauende Bakterien und Exoenzym. Arch. Mikrobiol. 47: 167–200.

    Article  CAS  Google Scholar 

  488. Hayward, A.C., Forsyth, W.G.C. & Roberts, J.B. (1959) Synthesis and breakdown of poly-β-hydroxybutyric acid by bacteria. J. Gen. Microbiol. 20: 510–518.

    Article  CAS  Google Scholar 

  489. Takahashi, J. (1980) Production of intracellular and extracellular protein from n-butane by Pseudomonas butanovora sp. nov. Adv. Appl. Microbiol. 26: 117–128.

    Article  CAS  Google Scholar 

  490. Takahashi, J., Ichikawa, Y., Sagae, H., Komura, I., Kanou, H. & Yamada, K. (1980) Isolation and identification of n-butane assimilating bacterium. Agric. Biol. Chem. 44: 1835–1840.

    Article  CAS  Google Scholar 

  491. Hayward, A.C. (1960) A method for characterizing Pseudomonas solanacearum. Nature 186: 405–406.

    Article  Google Scholar 

  492. Higham, D.P., Sadler, P.J. & Scawen, M.D. (1986) Gold-resistant bacteria: excretion of a cystine-rich protein by Pseudomonas cepacia induced by an antiarthritic drug. J. Inorg. Biochem. 28: 253–261.

    Article  CAS  Google Scholar 

  493. Ramsay, B.A., Ramsay, J.A. & Cooper, D.G. (1989) Production of poly-β-hydroxyalkanoic acid by Pseudomonas cepacia. Appl. Environ. Microbiol. 55: 584–589.

    CAS  Google Scholar 

  494. Wilkinson, S.G. (1969) Lipids of Pseudomonas diminuta. Biochim. Biophys. Acta 187: 492–500.

    Article  CAS  Google Scholar 

  495. Stinson, M.W. & Merrick, J.M. (1974) Extracellular enzyme secretion by Pseudomonas lemoignei. J. Bacteriol. 119: 152–161.

    CAS  Google Scholar 

  496. Nakayama, K., Saito, T., Fuku, T., Shirakura, Y. & Tomita, K. (1985) Purification and properties of extracellular poly(3-hydroxybutyrate) depolymerases from Pseudomonas lemoignei. Biochem. Biophys. Acta 827: 63–72.

    CAS  Google Scholar 

  497. Imada, A., Kitano, K., Kiutaka, K., Muroi, M. & Asai, M. (1981) Sulfazecin and isosulfazecin, novel beta-lactam antibiotics of bacterial origin. Nature 289: 590–591.

    Article  CAS  Google Scholar 

  498. Bowman, J.P., Sly, L.I. & Hayward, A.C. (1988) Pseudomonas mixta sp. nov., a bacterium from soil with degradative activity on a variety of complex polysaccharides. System. Appl. Microbiol. 11: 53–59.

    Article  CAS  Google Scholar 

  499. Brandl, H., Gross, R.A., Lenz, R.W. & Fuller, R.C. (1988) Pseudomonas oleovorans as a source for novel poly(β-hydroxyalkanoates). Polym. Prepr. 29: 590–591.

    CAS  Google Scholar 

  500. Gross, R.A., Brandl, H., Ulmer, H.W., Posada, M.A., Fuller, R.C. & Lenz, R.W. (1989) The biosynthesis and characterisation of new poly(β-hydroxyalkanoates). Polym. Prepr. 30: 492–493.

    CAS  Google Scholar 

  501. Knee, E.J., Wolf, M., Lenz, R.W. & Fuller, R.C. (1990) Influence of growth conditions on production and composition of PHA by Pseudomonas oleovorans. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 439–440. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  502. Preusting, H., Nijenhuis, A. & Witholt, B. (1990) Physical characteristics of poly(3-hydroxyalkanoates) and poly(3-hydroxyalkenoates) produced by Pseudomonas oleovorans grown on aliphatic hydrocarbons. Macromolecules 23: 4220–4224.

    Article  CAS  Google Scholar 

  503. Preusting, H., Nijenhuis, A. & Witholt, B. (1990) Production and characterization of poly(3-hydroxyalkanoates). In Novel Biodegradable Polymers (ed. Dawes, E.A.), pp. 453–454. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  504. Gagnon, K.D., Bain, D.B., Lenz, R.W. & Fuller, R.C. (1990) Yield study of the poly(beta-hydroxyalkanoate) produced by Pseudomonas oleovorans grown on sodium octanoate. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 449–450. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  505. Holmes, B., Owen, R.J., Evans, A., Malnik, H. & Willcox, W.R. (1977) Pseudomonas paucinobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources. Int. J. Syst. Bacteriol. 27: 133–146.

    Article  Google Scholar 

  506. Bertrand, J.-L., Ramsay, B.A., Ramsay, J.A. & Chavarie, C. (1990) Biosynthesis of poly-β-hydroxyalkanoates from pentoses by Pseudomonas pseudoflava. Appl. Environ. Microbiol. 56: 3133–3138.

    CAS  Google Scholar 

  507. Levine, H.B. & Wolochow, H. (1960) Occurrence of poly-β-hydroxybutyrate in Pseudomonas pseudomallei. J. Bacteriol. 79: 305–306.

    CAS  Google Scholar 

  508. Hayward, A.C. (1962) Studies on bacterial pathogens on sugar cane. II. Differentiation, taxonomy and renomenclature of the bacteria causing red stripe and mottled stripe disease. Mauritius Sugar Ind. Res. Inst. Occas. Pap. 13: 13–27.

    Google Scholar 

  509. Young, H.L., Chao, F.C., Turnbull, C. & Philpott, D.E. (1972) Ultrastructure of Pseudomonas saccharophila at early and late log-phase of growth. J. Bacteriol. 109: 862–868.

    CAS  Google Scholar 

  510. Granatskaya, T.A., Dvornikova, T.P., Platsynda, V.A. & Il’insakaya, S.P. (1981) Complex isolation of biologically active substances from hydrogen bacteria. Izv. Akad. Nauk Mold. SSR, Ser. Biol. Khim. Nauk 6: 41–45.

    Google Scholar 

  511. Craig, A.S., Greenwood, R.M. & Williamson, K.B. (1973) Ultrastructural inclusions of rhizobial bacteroids of lotus nodules and their taxonomic significance. Arch. Microbiol. 89: 23–32.

    Google Scholar 

  512. Tombolini, R. & Nuti, M.P. (1989) Poly(β-hydroxyalkanoate) biosynthesis and accumulation by different Rhizobium species. FEMS Microbiol. Lett. 60: 299–304.

    CAS  Google Scholar 

  513. Scandola, M., Pizzoli, M., Ceccorulli, G., Searo, A., Paoletti, S. & Navarini, L. (1988) PHB in solid state: dynamic mechanical and calorimetric properties. Polym. Prepr. 29: 613–614.

    Article  CAS  Google Scholar 

  514. Bonartseva, G.A., Myshkina, V.L. & Zagreba, E.A. (1989) Relationship between poly-β-hydroxybutyrate content and nitrogenase and hydrogenase activity in some strains of Rhizobium. Mikrobiologiya 58: 742–745.

    Google Scholar 

  515. Starr, M.P. (1981) The genus Lampropedia. In The Prokaryotes (eds Starr et al.) Vol. II, pp. 1530–1536. Springer.

    Google Scholar 

  516. Bonartseva, G.A., Myshkina, V.L. & Zagreba, E.A. (1989) Poly(β-hydroxybutyrate accumulation as a function of nitrogenase and hydrogenase activities in some Rhizobium strains. Microbiology 58: 923–926.

    Google Scholar 

  517. Patel, J.J. & Gerson, T. (1974) Formation and utilization of carbon reserves by Rhizobium. Arch. Microbiol. 101: 211–220.

    Article  CAS  Google Scholar 

  518. Stam, H., Van Verseveld, H.W., De Vries, W. & Stouthamer, A.H. (1986) Utilization of poly-β-hydroxybutyrate in free-living cultures of Rhizobium ORS571. FEMS Microbiol. Lett. 35: 215–220.

    CAS  Google Scholar 

  519. Vries, W. de, Stam, H., Duys, J.G., Ligtenberg, A.J.M., Simons, L.H. & Stouthamer, A.H. (1986) The effect of the dissolved oxygen concentration and anabolic limitations on the behaviour of Rhizobium ORS571 in chemostat cultures. Ant. v. Leeuwenhoek. J. Microbiol. Serol. 52: 85–96.

    Article  Google Scholar 

  520. Wong, P.P. & Evans, H.J. (1971) Poly-β-hydroxybutyrate utilization by soybean (Glycine max) nodules and assessment of its role in maintenance of nitrogenase activity. Plant Physiol. 47: 750–755.

    Article  CAS  Google Scholar 

  521. Fottrell, P.F. & O’Ttara, A. (1969) Multiple forms of D(-)-3-hydroxybutyrate dehydrogenases in Rhizobium. J. Gen. Microbiol. 57: 287–292.

    Article  CAS  Google Scholar 

  522. Casella, S., Leporini, C., Corti, A., Picci, G., Chiellini, E., Casini, E. & Solaro, R. (1990) Culture substrate effect in the production of poly(β-hydroxybutyrate by Rhizobium ‘hedysari’. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 73–80. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  523. Hahn, M., Meyer, L., Studer, D., Regensburger, B. & Hennecke, H. (1984) Insertion and deletion mutations within the nif region of Rhizobium japonicum. Plant Mol. Biol. 3: 159–168.

    Article  CAS  Google Scholar 

  524. Karr, D.B., Waters, J.K. & Emerich, D.W. (1983) Analysis of poly-β-hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection. Appl. Environ. Microbiol. 46: 1339–1344.

    CAS  Google Scholar 

  525. Werner, D. & Moerschel, E. (1978) Differentiation of nodules of Glycine max. Ultrastructural studies of plant cells and bacteroids. Planta 141: 169–177.

    Article  CAS  Google Scholar 

  526. Karr, D.B., Waters, J.K., Lee, S.-Y. & Emerich, D.W. (1983) Relationship between nitrogen fixation and carbon metabolism in Rhizobium japonicum bacteroides: enzymes of the poly-β-hydroxybutyrate cycle, the citric acid cycle and the pyruvate dehydrogenase complex. Curr. Top. Plant Biochem. Physiol. 1: 248.

    Google Scholar 

  527. Karr, D.B., Waters, J.K., Suzuki, F. & Emerich, D.W. (1984) Enzymes of the poly-β-hydroxybutyrate and citric acid cycles of Rhizobium japonicum bacteroids. Plant Physiol. 75: 1158–1162.

    Article  CAS  Google Scholar 

  528. Faizova, G.K., Borodulina, Yu.S. & Samsonova, S.P. (1971) Lipids of the nodule bacterial, Rhizobium leguminosarum. Mikrobiologiya 40: 471–474.

    CAS  Google Scholar 

  529. Kretovich, V.L., Romanov, V.I., Yushkova, L.A., Shramko, V.I. & Fedulova, N.G. (1977) Nitrogen fixation and poly-β-hydroxybutyric acid content in bacteroids of Rhizobium lupini and Rhizobium leguminosarum. Plant Soil 48: 291–302.

    Article  CAS  Google Scholar 

  530. Scandola, M., Pizzoli, M., Ceccorulli, G., Cesaro, A., Paoletti, S. & Navarini, L. (1988) Viscoelastic and thermal properties of bacterial poly-D-levo-beta-hydroxybutyrate. Int. J. Biol. Macromol. 10: 373–377.

    Article  CAS  Google Scholar 

  531. Tikhonovich, I.A., Romanov, V.I., Alisova, S.M., Chermenskaya, I.E., Chetkova, S.A. & Fedulova, N.G. (1985) Nitrogen fixation and photoassimilates in the nodules of chlorophyll mutants of peas. Genetika 21: 1021–1025.

    CAS  Google Scholar 

  532. Zevenhuizen, L.P.T.M. (1981) Cellular glucogen, β-1,2-glycan, poly-β-hydroxybutyric acid and extracellular polysaccharides in fastgrowing species of Rhizobium. Ant. v. Leeuwenhoek 47: 481–497.

    Article  CAS  Google Scholar 

  533. Gerson, T., Patel, J.J. & Wong, M.N. (1978) The effects of age, darkness and nitrate on poly-β-hydroxybutyrate levels and nitrogen-fixing ability of Rhizobium in Lupinus angustifolius. Physiol. Plant 42: 420–424.

    Article  CAS  Google Scholar 

  534. Romanov, V.I., Yushkova, L.A. & Kretovich, W.L. (1975) Synthesis and decomposition of poly-β-hydroxybutyric acid in Rhizobium lupini. Microbiologiya 44: 820–824.

    CAS  Google Scholar 

  535. Romanov, V.I., Fedulova, N.G., Shramko, V.I., Molchanov, M.I. & Kretovich, V.L. (1980) Metabolism of poly-β-hydroxybutyric acid in bacteroids of Rhizobium lupini in connection with nitrogen fixation and photosynthesis. Plant Soil 56: 379–390.

    Article  CAS  Google Scholar 

  536. Fedulova, N.G., Chermenskaya, I.E., Romanov, V.I. & Kretovich, V.L. (1980) Enzymes of poly(β-hydroxybutyrate) metabolism in Rhizobium lupini bacteroids. Fiziol. Rast. 27: 544–550.

    CAS  Google Scholar 

  537. Bonartseva, G.A. (1985) Activity of nodule bacteria in terms of poly(phydroxybutyrate) accumulation during colony staining with phosphine 3R. Mikrobiologiya 54: 461–464.

    CAS  Google Scholar 

  538. Bonartseva, G.A. & Myshkina, V.L. (1985) Fluorescence intensity of Rhizobium meliloti and Rhizobium phaseoli differing in activity and growing in the presence of the lipophilic vital dye phosphine 3R. Microbiologiya 54: 661–667.

    CAS  Google Scholar 

  539. Herrera de Mola, A., Marx-Figini, M. & Figini, R.V. (1975) Molecular weight distribution of native poly(D-β-hydroxybutyric acid). Makromol. Chem. 176: 2655–2667.

    Article  Google Scholar 

  540. Carranza, M.M., Rosas, S.B. & Ghittoni, N.E. (1986) Molecular composition of Rhizobium meliloti when parathion was added at the start of incubation. J. Appl. Bacteriol. 60: 9–13.

    Article  CAS  Google Scholar 

  541. Carranza de Storani, M.M., Rosas, S.B. & Ghittoni, N.E. (1985) Effect of parathion on growth, polysaccharides, lipids and proteins of Rhizobium meliloti. Antonie van Leeuwenhoek 51: 249–254.

    Article  Google Scholar 

  542. Tombolini, R., Boesten, B., O’Gara, F. & Nuti, M.P. (1990) Poly-β-hydroxyalkanoate (PHA) accumulation in Rhizobium meliloti affected in the dicarboxylate transport (DCT) genes. In Novel Biodegradable Microbiol. Polymers (ed. Dawes, E.A.), pp. 431–434. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  543. Soberon, M., Membrillo-Hernandez, J., Aquilar, G.R. & Sanchez, F. (1990) Isolation of Rhizobium phaseoli Tn5-induced mutants with altered expression of cytochrome terminal oxidases o and aa3. J. Bacteriol. 172: 1676–1680.

    CAS  Google Scholar 

  544. Vincent, J.M., Humphrey, B. & North, R.J. (1962) Some features of the fine structure and chemical composition of Rhizobium trifoli. J. Gen Microbiol. 29, 551–555.

    Article  CAS  Google Scholar 

  545. Karayiannis, V.G. & Madigan, M.T. (1990) Acetone as a substrate for poly-β-hydroxybutyrate production by phototrophic purple bacteria. In Novel Biodegradable Microbial Polymers (ed. Dawes, E.A.), pp. 427–430. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  546. Chong, E.P. & Berger, L.K. (1967) Fatty acids of extractable and bound lipids of Rhodomicrobium vannielii. J. Bacteriol. 93: 230–236.

    Google Scholar 

  547. Bloomfield, G., Sandu, G. & Carr, N.G. (1969) Activation by Hg2+ of acetoacetyl-CoA reductase in extracts of Rhodopseudomonas spheroides and Rhodomicrobium vannielli. FEBS Lett. 5: 246–248.

    Article  CAS  Google Scholar 

  548. Kondrateva, E.N., Krasil’nikova, E.N. & Novikova, L.M. (1968) Production of polysaccharides by green photosynthesizing bacteria. Mikrobiologiya 37: 417–424.

    CAS  Google Scholar 

  549. Williamson, D.H., Mellanby, J. & Krebbs, H.A. (1962) Enzymic determination of D(-)-β-hydroxybutyric acid and acetoacetic acid in blood. Biochem. J. 82: 90–96.

    Article  CAS  Google Scholar 

  550. Dierstein, R. & Drews, G. (1974) Nitrogen-limited continuous culture of Rhodopseudomonas capsulata growing photosynthetically or heterotrophically under low oxygen tensions. Arch. Microbiol. 99: 117–128.

    Article  CAS  Google Scholar 

  551. Goebel, F. (1978) Quantum efficiencies of growth of photosynthetic bacteria. In Photosynthetic Bacteria (eds Clayton, R.K. & Sistrom, W.R.), pp. 907–925.

    Google Scholar 

  552. Wijbenga, D.J. & Van Gemerden, H. (1981) The influence ot acetate on the oxidation of sulfide by Rhodopseudomonas capsulata. Arch. Microbiol. 43: 109–137.

    Google Scholar 

  553. Oadri, S.M.H. & Hoare, D.S. (1968) Formic hydrogenlyase and the photoassimilation of formate by a strain of Rhodopseudomonas palustris. J. Bacteriol. 95: 2344–2357.

    Google Scholar 

  554. Imai, Y., Morita, S. & Arata, Y. (1984) Proton correlation NMR studies of metabolism in Rhodopseudomonas palustris. J. Biochem. 96: 691–699.

    CAS  Google Scholar 

  555. Nicolay, K., Hellingwerf, K.J., Kaptein, R. & Konings, W.N. (1982) Carbon-13 nuclear magnetic resonance studies of acetate metabolism in intact cells of Rhodopseudomonas spheroides. Biochim. Biophys. Acta 720: 250–258.

    Article  CAS  Google Scholar 

  556. Peters, G.A. & Cellarius, R.A. (1972) Photosynthetic membrane development in Rhodopseudomonas spheroides. II. Correlation of pigment incorporation with morphological aspects of thylakoid formation. Bioenergetics 3: 345–356.

    Article  CAS  Google Scholar 

  557. Carr, N.G. & Lascelles, J. (1961) Some enzymic reactions concerned in the metabolism of acetoacetic-coenzyme A in Athiorhodaceae. Biochem. J. 80: 70–72.

    Article  CAS  Google Scholar 

  558. Ohashi, A., Oshihara, N. & Kikuchi, G. (1967) Pyruvate metabolism in Rhodospeudomonas spheroides under light-anaerobic conditions. J. Biochem. 62: 497.

    CAS  Google Scholar 

  559. Bergmeyer, H.U., Gawehn, K. & Klotzsch, H. (1967) Purification and properties of crystalline 3-hydroxybutyrate dehydrogenase from Rhodopseudomonas spheroides. Biochem. J. 102: 423–431.

    Article  CAS  Google Scholar 

  560. Reiss-Husson, F., De Klerk, H., Jolchine, G., Jauneau, E. & Kamen, M.D. (1971) Effects of iron deficiency on Rhodopseudomonas spheroides strain. Y. Biochim. Biophys. Acta 234: 73–82.

    Article  CAS  Google Scholar 

  561. Hurst, R., Pincock, A. & Broekhoven, L.H. (1973) Model discrimination and nonlinear parameter estimation in the analysis of the mechanisms of action of β-hydroxybutyrate dehydrogenase from Rhodopseudomonas spheroides. Biochim. Biophys. Acta 321: 1–26.

    Article  CAS  Google Scholar 

  562. Preuveneers, M.J., Peacock, D., Crook, E.M., Clark, J.B. & Brocklehurst, K. (1973) D-3-hydroxybutyrate dehydrogenase from Rhodopseudomonas spheroides. Kinetic mechanism from steady-state kninetics of the reaction catalysed by the enzyme in solution and covalently attached to diethylaminoethyl-cellulose. Biochem. J. 133: 133–157.

    Article  CAS  Google Scholar 

  563. Preuveneers, M.J., Peacock, D., Crook, E.M., Clark, J.B. & Bricklehurst, K. (1973) D-3-hydroxybutyrate dehydrogenase from Rhodopseudomonas spheroides. Kinetics of radioisotope redistribution at chemical equilibrium catalysed by the enzyme in solution. Biochem. J. 133: 159–164.

    Article  CAS  Google Scholar 

  564. Giesbrecht, P. (1968) Zur Darstellung der DNS von Bakterien und plastischer biologischer Strukturen mit Hilfe der Gefrieratzung. Zbl. Bakt. I. Abt. Orig. 207: 198–221.

    CAS  Google Scholar 

  565. Boatman, E.S. (1964) Observations on the fine structure of spheroplasts of Rhodospirillum rubrum. J. Cell Biol. 20: 297–306.

    Article  CAS  Google Scholar 

  566. Cohen-Bazire, G. Kunisawa, R. (1963) The fine structure of Rhodospirillum nubrum. J. Cell. Biol. 16: 401–419.

    Article  CAS  Google Scholar 

  567. Uffen, R.L., Sybesma, C. & Wolfe, R.S. (1971) Mutants of Rhodospirillum rubrum obtained after long-term, anaerobic dark growth. J. Bacteriol. 108: 1348–1356.

    CAS  Google Scholar 

  568. Bosshard-Herr, E. & Bachofen, R. (1969) Synthese von Speicherstoffen aus Pyruvat durch Rhodospirillum rubrum. Arch. Microbiol. 65: 61–75.

    CAS  Google Scholar 

  569. Stanier, R.Y., Doudoroff, M., Kunisawa, R. & Contopoulou, R. (1959) The role of organic substrates in bacterial photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 45: 1246–1260.

    Article  CAS  Google Scholar 

  570. Merrick, J.M. (1965) Effect of polymyxin B, tyrocidine, gramicidine D and other antibiotics on the enzymatic hydrolysis of poly-β-hydroxybutyrate. J. Bacteriol. 90: 965–969.

    CAS  Google Scholar 

  571. Shuster, C.W. & Doudoroff, M. (1962) A cold-sensitive D(-)-β-hydroxybutyric acid dehydrogenase from Rhodospirillum rubrum. J. Biol. Chem. 237: 603–607.

    CAS  Google Scholar 

  572. Stern, J.R., Del Campillo, A. & Raw, I. (1956) J. Biol Chem. 218: 971–978.

    CAS  Google Scholar 

  573. Mulder, E.G., Deinema, M.H., Van Neen, W.L. & Zevenhuizen, L.P.T.M. (1962) Polysaccharides, lipids and poly-β-hydroxybutyrate in microorganisms. Rec. Tray. Chim. 81: 797–809.

    Article  Google Scholar 

  574. Mulder, E.G. & Van Veen, W.L. (1963) Investigations of the SphaerotilusLeptothrix group. Ant. v. Leeuwenhoek 29: 121–153.

    Article  CAS  Google Scholar 

  575. Nakata, H.M. (1963) Effect of pH on intermediates produced during growth and sporulation of Bacillus cereus. J. Bacteriol. 86: 577–581.

    CAS  Google Scholar 

  576. Rouf, M.A. & Stokes, J.L. (1962) Isolation and identification of the sudanophilic granules of Sphaerotilus natans. J. Bacteriol. 83: 343–347.

    CAS  Google Scholar 

  577. Van Den Eynde, E., Vriens, L., Wynants, M. & Verachtert, H. (1984) Transient behaviour and time aspects of intermittently and continuously fed bacterial cultures with regard to filamentous bulking of activated sludge. Appl. Microbiol. Biotechnol. 19: 44–52.

    Article  Google Scholar 

  578. Van Veen, W.L., Mulder, E.G. & Deinema, M.H. (1978) The Sphaerotilus-Leptothrix group of bacteria. Microbiol. Rev. 42: 329–356.

    Google Scholar 

  579. Matin, A., Veldhuis, C., Stegeman, V. & Veenhuis, M. (1979) Selective advantage of a Spirillum sp. in a carbon-limited environment. Accumulation of poly-β-hydroxybutyric acid and its role in starvation. J. Gen. Microbiol. 112: 349–355.

    Article  CAS  Google Scholar 

  580. Martinez, R.J. (1962) On the nature of the granules of the genus Spirillum. Arch. Microbiol. 44: 334–343.

    Google Scholar 

  581. Ohou, Y., Albrecht, S.L. & Burris, R.H. (1976) Carbon and ammonia metabolism of Spirillum lipoferum. J. Bacteriol. 128: 592–597.

    Google Scholar 

  582. Semenov, A.M., Hanzlikova, A. & Jasndera, A. (1989) Quantitative estimation of poly-3-hydroxybutyric acid in some oligotrophic polyprosthecate bacteria. Folia Microbiol. 34: 267–270.

    Article  CAS  Google Scholar 

  583. Kutty, M.R., Kannan, L.V. & Rehacek, Z. (1969) Effect of phosphate on biosynthesis of antimycin A and production and utilization of poly-β-hydroxybutyrate by Streptomyces antibioticus. Ind. J. Biochem. 6: 230–231.

    CAS  Google Scholar 

  584. Packter, N.M. & Flatman, S. (1983) Characterization of acetoacetyl-CoA reductase (3-oxoreductase) from Streptomyces coelicolor: its possible role in polyhydroxylbutyrate biosynthesis. Biochem. Soc. Trans. 11: 598–599.

    Article  CAS  Google Scholar 

  585. Zychlinsky, E. & Matin, A. (1983) Effect of starvation on cytoplasmic pH, protonmotive force, and viability of an acidophilic bacterium, Thiobacillus acidophilus. J. Bacteriol. 153: 371–374.

    CAS  Google Scholar 

  586. Tabita, R. & Lundgren, D.G. (1971) Utilization of glucose and the effect of organic compounds on the chemolithotroph Thiobacillus ferrooxidans. J. Bacteriol. 108: 328–333.

    CAS  Google Scholar 

  587. Claassen, P.A.M., Dijkema, C., Visser, J. & Zehnder, A.J.B. (1986) In vivo carbon-13 NMR analysis of acetate metabolism in Thiobacillus versutus under denitrifying conditions. Arch. Microbiol. 146: 227–232.

    Article  CAS  Google Scholar 

  588. Boon, J.J., de Leeuw, J.W. & Krumbein, W.E. (1985) Biogeochemistry of Gavish Sabkha sediments. II. Pyrolysis mass spectrometry of the laminated microbial mat in the permanently water-covered zone before and after the desert sheetflood of 1979. Ecol. Stud. 53: 368–380; 440–470.

    Article  CAS  Google Scholar 

  589. Tamura, Y., Fujino, T., Kondo, M. & Kotani, S. (1968) Occurrence of poly(β-hydroxybutyric acid) inclusions in Vibrio parahaemolyticus A55. Biken J. 11: 225–234.

    CAS  Google Scholar 

  590. Tamura, T., Kato, K., Iwata, S., Kotani, S. & Kitaura, T. (1976) Studies of the cell envelope of Vibrio parahaemolyticus A55: isolation and purification of bagshaped peptidoglycan (murein sacculus). Biken J. 19: 93–113.

    CAS  Google Scholar 

  591. Wiegel, J., Wilke, D., Baumgarten, J., Opitz, P. & Schlegel, H.G. (1978) Transfer of the nitrogen-fixing hydrogen bacterium Corynebacterium autotrophicum, Baumgarten et al. to Xanthobacter gen. nov. Int. J. Syst. Bacteriol. 28: 578–581.

    Article  Google Scholar 

  592. Angelbeck, D.I. & Kirsch, E.J. (1969) Influence of pH and metal cations on aggregated growth of non-slime forming strains of Zoogloea ramigera. Appl. Microbiol. 17: 435–440.

    Google Scholar 

  593. Friedman, B.A. & Dugan, P.R. (1968) Identification of Zoogloea species and the relationship to Zoogloeal matrix and floc formation. J. Bacteriol. 95: 1903–1909.

    CAS  Google Scholar 

  594. Friedman, B.A., Dugan, P.R., Pfister, R.M. & Remsen, C.C. (1968) Fine structure and composition of the Zoogloeal matrix surrounding Zoogloea ramigera. J. Bacteriol. 96: 2144–2153.

    CAS  Google Scholar 

  595. Crabtree, K., McCoy, E., Boyle, W.C. & Rohlich, G.A. (1965) Isolation, identification, and metabolic role of the sudanophilic granules of Zoogloea ramigera. Appl. Microbiol. 13: 218–226.

    CAS  Google Scholar 

  596. Crabtree, K., Boyle, W., McCoy, E. & Rohlich, G.A. (1966) Mechanism of floc formation of Zoogloea ramigera. J. Water Pollut. Contr. Fed. 38: 1968–1980.

    CAS  Google Scholar 

  597. Cooper, T.A., Flatt, J.H., Lightfoot, E.N. & Cameron, D.C. (1989) Exopolysaccharide production from lactose by wild-type and polyhydroxybutyrate minus strains of Zoogloea ramigera. Abstr. PAP Am. Chem. Soc. 198

    Google Scholar 

  598. Fukui, T., Yoshimoto, A., Matsumoto, M., Hosokawa, S., Saito, T., Nishikawa, H. & Kenkichi, T. (1976) Enzymatic synthesis of poly-β-hydroxybutyrate in Zoogloea ramigera. Arch. Microbiol. 110: 149–156.

    Article  CAS  Google Scholar 

  599. Parsons, A.G. & Dungan, P.R. (1971) Production of extracellular polysaccharide matrix by Zoogloea ramigera. Appl. Microbiol. 21: 657–661.

    CAS  Google Scholar 

  600. Tomita, K. & Saito, T. (1976) Metabolism of poly-β-hydroxybutyrate in Zoogloea ramigera. Seikagaku 48: 1045–1048.

    CAS  Google Scholar 

  601. Davis, J.T., Moore, R.N., Imperiali, B., Pratt, A.J., Kobayashi, K., Masamune, S., Sinskey, A.J. & Walsh, C.T. (1987) Biosynthetic thiolase from Zooloea ramigera. I. Preliminary characterization and analysis of proton transfer reaction. J. Biol. Chem. 262: 82–89.

    CAS  Google Scholar 

  602. Davis, J.T., Chen, H.-H., Moore, R., Nishitani, Y., Masamune, S., Sinskey, A.J. & Walsh, C.T. (1987) Biosynthetic thiolase from Zoogloea ramigera. II. Inactivation with haloacetyl CoA analogs. J. Biol. Chem. 262: 90–96

    CAS  Google Scholar 

  603. Fukui, T., Ito, M., Saito, T. & Tomita, K. (1987) Purification and characterization of NADP-linked acetoacetyl-CoA reductase from Zoogloea ramigera I-16-M. Biochim. Biophys. Acta 917: 365–371.

    Article  CAS  Google Scholar 

  604. Ito, M., Saito, T. & Tomita, K. (1987) Purification and characterization of NADP-linked acetoacetyl-CoA reductase from Zoogloea ramigera I-16-M. Biochim. Biophys. Acta 917: 365–371.

    Article  Google Scholar 

  605. Ploux, O., Masamune, S. & Walsh, C.T. (1988) The NADPH-linked acetoacetyl-CoA reductase from Zoogloea ramigera. Characterization and mechanistic studies on the cloned enzyme over-produced in Escherichia coli. Eur. J. Biochem. 174: 177–182.

    Article  CAS  Google Scholar 

  606. Saito, T., Fukui, T., Ikeda, F., Tanaka, Y. & Tomita, K. (1977) An NADPlinked acetoacetyl CoA reductase from Zoogloea ramigera. Arch. Microbiol. 114: 211–217.

    Article  CAS  Google Scholar 

  607. Saito, T., Takemura, N., Ito, M. & Tomita, K. (1990) An enzymatic assay method for D(—)-3-hydroxybutyrate and acetoacetate involving acetoacetyl Coenzyme A synthetase from Zoogloea ramigera. Chem. Pharmac. Bulletin 38: 1627–1629.

    Article  CAS  Google Scholar 

  608. Thompson, S., Mayer, F., Peoples, P., Masamune, S., Sinskey, A.J. & Walsh, C.T. (1989) Mechanistic studies on β-ketoacyl thiolase from Zoogloea ramigera: identification of the active-site nucleophile as Cys 89, its mutation to Ser 89, and kinetic and thermodynamic characterization of wild-type and mutant enzymes. Biochemistry 28: 5735–5742.

    Article  CAS  Google Scholar 

  609. Walsh, C.T., Chen, W.H., Differding, E., Masamune, S., Peoples, O.P., Ploux, O., Sinskey, A.J. & Thompson, A.J. (1989) Enzymes in the biosynthesis of polyesters. Proc. Robert A. Welsh Found. Conf. Chem. Res. 31: 184–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David Byrom

Copyright information

© 1991 Palgrave Macmillan, a division of Macmillan Publishers Limited and ICI Biological Products Business

About this chapter

Cite this chapter

Steinbüchel, A. (1991). Polyhydroxyalkanoic acids. In: Byrom, D. (eds) Biomaterials. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-11167-1_3

Download citation

Publish with us

Policies and ethics