Skip to main content

The interaction of phosphoproteins with calcium phosphate

  • Chapter
  • 42 Accesses

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

This review is concerned with some of the well-characterised phosphoproteins that interact with calcium phosphate as part of their biological function, and phosphoproteins that have been used frequently in laboratory studies of phosphoprotein-calcium phosphate interactions. This heterogeneous group comprises the phosphophoryns from teeth, the bone phosphoproteins, the caseins from milk, the statherins and acidic proline-rich proteins of saliva, osteonectin and the egg phosvitins. The prominence given here to the caseins is largely a reflection of our own research interests, but it can be justified as bringing this well-studied group of phosphoproteins more to the attention of researchers in the field of tissue mineralisation.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addadi, L. and Weiner, S. (1985). Interactions between acidic proteins and crystals: Stereochemical requirements in biomineralization. Proc. Natl Acad. Sci. USA, 82, 4110–14

    Google Scholar 

  • Addadi, L., Berkovitch-Yellin, Z., Weissbuch, I., Mil, J. van, Shimon, L. J. W., Lahav, M. and Leiserowitz, L. (1985). Growth and dissolution of organic crystals with ‘tailor-made’ inhibitors — Implications in stereochemistry and materials science. Angew. Chem. Int. Ed. Engl., 24, 466–85

    Google Scholar 

  • Andrews, A. L., Atkinson, D., Evans, M. T. A., Finer, E. G., Green, J. P., Phillips, M. C. and Robertson, R. N. (1979). The conformation and aggregation of bovine β-casein A. 1. Molecular aspects of thermal aggregation. Biopolymers, 18, 1105–21

    Google Scholar 

  • Azen, E. A. (1978). Genetic protein polymorphisms in human saliva: an interpretive review. Biochem. Genet., 16, 79–99

    Google Scholar 

  • Banks, E., Nakajima, S., Shapiro, L. C., Tilevitz, O., Alonzo, J. R. and Chianelli, R. R. (1977). Fibrous apatite grown on modified collagen. Science, 198, 1164–6

    Google Scholar 

  • Bennick, A. (1975). Chemical and physical characteristics of a phosphoprotein from human parotid saliva. Biochem. J., 145, 557–67

    Google Scholar 

  • Bennick, A., Mclaughlin, A. C., Grey, A. A. and Madapallimattam, G. (1981). The location and nature of calcium-binding stites in salivary acidic proline-rich phosphoproteins. J. Biol. Chem., 256, 4741–6

    Google Scholar 

  • Bernstein, F. C., Koetzle, T. F. Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. and Tasumi, M. (1977). The Protein Data Bank: a computer-based archival file for macromolecular structures. J. Molec. Biol., 112, 535–42

    Google Scholar 

  • Bhandari, D. G., Levine, B. A., Trayer, I. P. and Yeadon, M. E. (1986). 1H-NMR study of mobility and conformational constraints within the proline-rich N-terminal of the LC1 alkali light chain of skeletal myosin. Eur. J. Biochem., 160, 349–56

    Google Scholar 

  • Boskey, A. L. and Posner, A. S. (1973). Conversation of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-solid conversion. J. Phys. Chem., 77, 2313–17

    Google Scholar 

  • Braunlin, W. H., Vogel, H. J., Drakenberg, T. and Bennick, A. (1986). A calcium-43 NMR study of calcium binding to an acidic proline-rich phosphoprotein from human saliva. Biochemistry, NY, 25, 584–9

    Google Scholar 

  • Braunlin, W. H., Vogel, H. J. and Forsen, S. (1984). Potassium-39 and sodium-23 NMR studies of cation binding to phosvitin. Eur. J. Biochem., 142, 139–44

    Google Scholar 

  • Brignon, G., Ribadeau Dumas, B. and Mercier, J.-C. (1976). First elements of the primary structure of bovine αs2-caseins. FEBS Lett., 71, 111–16

    Google Scholar 

  • Brignon, G., Ribadeau Dumas, B., Mercier, J.-C, Pelessier, J. P. and Das, B. C. (1977). Complete amino acid sequence of bovine αs2-casein. FEBS Lett., 76, 274–9

    Google Scholar 

  • Byrne, B. M., Schip, A. D. van het, Klundert, J. A. M. van de, Arnberg, A. C, Gruber, M. and AB, G. (1984). Amino acid sequence of phosvitin derived from the nucleotide sequence of part of the chicken vitellogenin gene. Biochemistry, NY, 23, 4275–9

    Google Scholar 

  • Chaplin, L. C., Clark, D. C. and Smith, L. J. (1988). The secondary structure of peptides derived from caseins: a circular dichroism study. Biochim. Biophys. Acta, 956, 162–72

    Google Scholar 

  • Chernov, A. A. (1984). In Modern Crystallography III, Crystal Growth (ed. A. A. Chernov), Springer, Berlin, chh. 1, 4 and 5

    Google Scholar 

  • Cocking-Johnson, D., Kampen, C. L. van and Sauk, J. J. (1983). Electron-microscopical studies of conformational changes in dentinal phosphophoryn. Collagen Rel. Res., 3, 505–10

    Google Scholar 

  • Cookson, D. J., Levine, B. A., Williams, R. J. P., Jontell, M., Linde, A. and Bernard, B. de. (1980). Cation binding by the rat-incisor-dentine phosphoprotein. Eur. J. Biochem., 110, 273–8

    Google Scholar 

  • Creamer, L. K., Richardson, T. and Parry, D. A. D. (1981). Secondary structure of bovine αs1- and β-casein in solution. Archs Biochem. Biophys., 211, 689–96

    Google Scholar 

  • Curley-Joseph, J. and Veis, A. (1979). The nature of covalent complexes of phosphoproteins with collagen in the bovine dentin matrix. J. Dent. Res., 58, 1625–33

    Google Scholar 

  • Dalgleish, D. G. and Parker, T. G. (1980). Binding of calcium ions to bovine αs1-casein and precipitability of the protein-calcium ion complexes. J. Dairy Res., 47, 113–22

    Google Scholar 

  • De Carlo, A., Multigner, L., Lafont, H., Lombardo, D. and Sarles, H. (1984). The molecular characteristics of a human pancreatic acidic phosphoprotein that inhibits calcium carbonate crystal growth. Biochem. J., 222, 669–77

    Google Scholar 

  • Deber, C. M., Bovey, F. A., Carver, J. P. and Blout, E. R. (1970). Nuclear magnetic reasonance evidence for cis-peptide bonds in proline oligomers. J. Am. Chem. Soc., 92, 6191–8

    Google Scholar 

  • Elgavish, G. A., Hay, D. I. and Schlesinger, D. H. (1984). 1H and 31P nuclear magnetic resonance studies of human salivary statherin. Int. J. Peptide Protein Res., 23, 230–4

    Google Scholar 

  • Eliopoulos, E., Geddes, A. J., Brett, M., Pappin, D. J. C. and Findlay, J. B. C. (1982). A structural model for the chromophore-binding domain of ovine rhodopsin. Int. J. Biol. Macromol., 4, 263–68

    Google Scholar 

  • Engel, J. Taylor, W. Paulsson, M., Sage, H. and Hogan, B. (1987). Calcium binding domains and calcium-induced conformational transition of SPARC/BM-40/Osteonectin an extracellular glycoprotein expressed in mineralized and nonmineralized tissues. Biochemistry, NY, 26, 6958–65

    Google Scholar 

  • Fenselau, C., Heller, D. N., Miller, M. S. and White, H. B. III. (1985). Phosphorylation sites

    Google Scholar 

  • in riboflavin binding protein characterized by fast atom bombardment mass spectrometry. Anal. Biochem., 150, 309–14

    Google Scholar 

  • Fujisawa, R., Kuboki, Y. and Sasaki, S. (1986). Changes in interaction of bovine dentin phosphophoryn with calcium and hydroxyapatite by chemical modifications. Calcif. Tiss. Int., 39, 248–51

    Google Scholar 

  • Glimcher, M. J. (1984). Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Phil. Trans. R. Soc. Lond. B., 304, 479–508

    Google Scholar 

  • Graham, E. R. B., Malcolm, G. N. and McKenzie, H. A. (1984). On the isolation and conformation of bovine-casein A. Int. J. Biol. Macromol., 6, 155–61

    Google Scholar 

  • Griffin, M. C. A., Price, J. C. and Martin, S. R. (1986). Effect of alcohols on the structure of caseins: circular dichroism studies of kappa-casein A. Int. J. Biol. Macromol., 8, 367–71

    Google Scholar 

  • Grizzuti, K. and Perlmann, G. E. (1973). Binding of magnesium and calcium ions to the phosphoglycoprotein phosvitin. Biochemistry, NY, 12, 4399–403

    Google Scholar 

  • Grøn, P. and Hay, D. I. (1976). Inhibition of calcium phosphate precipitation by human salivary secretions. Archs Oral Biol., 21, 201–5

    Google Scholar 

  • Grosclaude, F., Mahé, M.-F. and Ribadeau Dumas, B. (1973). Structure primaire de la caseine αs1 et de la caseine β bovine. Eur. J. Biochem., 40, 323–4

    Google Scholar 

  • Hartman, P. (1973). In Crystal Growth: An Introduction (ed. P. Hartman), North Holland, Amsterdam, Chapter 14

    Google Scholar 

  • Hartman, P. (1982). Crystal faces: structure and growth. Geol. Mijnbouw, 61, 313–20

    Google Scholar 

  • Hay, D. I., Moreno, E. C. and Schlesinger, D. H. (1979). Phosphoprotein inhibitors of calcium phosphate precipitation from salivary secretions. Inorganic Perspectives in Biology and Medicine, 2, 271–85

    Google Scholar 

  • Hay, D. I., Schluckebier, S. K. and Moreno, E. C. (1986). Saturation of human salivary secretions with respect to calcite and inhibition of calcium carbonate precipitation by salivary constituents. Calcif. Tiss. Int., 39, 151–60

    Google Scholar 

  • Hay, D. I., Carlson, E. R., Schluckebier, S. K., Moreno, E. C. and Schlesinger, D. H. (1987). Inhibition of calcium phosphate precipitation by human salivary acidic proline-rich proteins: structure-activity relationships. Calcif. Tiss. Int., 40, 126–32

    Google Scholar 

  • Holt, C. (1982). Inorganic constituents of milk. III. The colloidal calcium phosphate of cow’s milk. J. Dairy Res., 49, 29–38

    Google Scholar 

  • Holt, C. (1983). Swelling of Golgi vesicles in mammary secretory cells and its relation to the yield and quantitative composition of milk. J. Theor. Biol., 101, 247–61

    Google Scholar 

  • Holt, C. and Sawyer, L. (1988). Primary and predicted secondary structures of the caseins in relation to their biological function. Protein Engineering, 2, 251–9

    Google Scholar 

  • Holt, C., Davies, D. T. and Law, A. J. R. (1986). Effects of colloidal calcium phosphate content and free calcium ion concentration in the milk serum on the dissociation of bovine casein micelles. J. Dairy Res., 53, 557–72

    Google Scholar 

  • Holt, C, van Kemenade, M. J. J. M., Harries, J. E., Nelson, L. S., Jr, Bailey, R. T., Hukins, D. W. L., Hasnain, S. S. and de Bruyn, P. L. (1989a). Preparation of amorphous calcium magnesium phosphates at pH7 and characterization by X-ray absorption and Fourier transform infrared spectroscopy. J. Cryst. Growth, 92, 239–52

    Google Scholar 

  • Holt, C., van Kemenade, M. J. J. M., Nelson, L. S., Jr, Hukins, D. W. L., Bailey, R. T., Harries, J. E., Hasnain, S. S. and de Bruyn, P. L. (1989b). Amorphous calcium phosphates prepared at pH 6.5 and 6.0. Mater. Res. Bull., 23, 55–62

    Google Scholar 

  • Humphrey, R. S. and Jolley, K. W. (1982). 31P-NMR studies of bovine β-casein. Biochim. Biophys. Acta, 708, 294–9

    Google Scholar 

  • James, M. N. G. and Sielecki, A. R. (1986). Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8 A resolution. Nature, Lond., 319, 33–8

    Google Scholar 

  • Jenness, R. and Holt, C. (1987). Casein and lactose concentrations in milk of 31 species are negatively correlated. Experientia, 43, 1015–18

    Google Scholar 

  • Jontell, M. and Linde, A. (1983). Non-collagenous proteins of predentine from dentinogeni-cally active bovine teeth. Biochem. J., 214, 769–76

    Google Scholar 

  • Van Kemenade, M. J. J. M. (1988). Influence of casein on precipitation of calcium phosphates. Thesis, University of Utrecht, Utrecht, The Netherlands

    Google Scholar 

  • Van Kemenade, M. J. J. M., and de Bruyn, P. L. (1987). A kinetic study of precipitation from supersaturated calcium phosphate solutions. /. Colloid Interface Sci., 118, 564–85

    Google Scholar 

  • Van Kemenade, M. J. J. M., and de Bruyn, P. L. (1989). The influence of casein on the kinetics of hydroxyapatite precipitation. J. Colloid Interface Sci. (in press)

    Google Scholar 

  • Knoop, A.-M., Knoop, E. and Wiechen, A. (1979). Sub-structure of synthetic casein micelles. J. Dairy Res., 46, 347–50

    Google Scholar 

  • Kousvelari, E. E., Baratz, R. S., Burke, B. and Oppenheim, F. G. (1980). Immunochemical identification and determination of proline-rich proteins in salivary secretions, enamel pellicle, and glandular tissue specimens. J. Dent. Res., 59, 1430–38

    Google Scholar 

  • Kuhn, N. J. and White, A. (1977). The role of nucleoside diphosphatase in a uridine nucleotide cycle associated with lactose synthesis in rat mammary-gland Golgi apparatus. Biochem. J., 168, 423–33

    Google Scholar 

  • Landis, W. J., Sanzome, C. F., Brickley-Parsons, D. and Glimcher, M. J. (1984). Radioautographic visualization and biochemical identification of O-phosphoserine- and O-phosphothreonine-containing phosphoproteins in mineralizing embryonic chick bone. J. Cell Biol., 98, 986–90

    Google Scholar 

  • Lee, S. L., Glonek, T. and Glimcher, M. J. (1983). 31P nuclear magnetic resonance spectroscopic evidence for ternary complex formation of fetal dentin phosphoprotein with calcium and inorganic orthophosphate ions. Calcif. Tiss. Int., 35, 815–18

    Google Scholar 

  • Lee, S. L., Veis, A. and Glonek, T. (1977). Dentin phosphoprotein: an extracellular calcium-binding protein. Biochemistry, NY, 16, 2971–9

    Google Scholar 

  • Linde, A. (1985). In The Chemistry and Biology of Mineralized Tissues (ed. W. T. Butler), EBSCO-media, Birmingham, Alabama, pp. 344–55

    Google Scholar 

  • Liu, S. T., Hurivitz, A. and Nancollas, G. H. (1982). The influence of polyphosphate ions on the precipitation of calcium oxalate. J. Urol., 127, 351–5

    Google Scholar 

  • Lyster, R. L. J., Mann, S., Parker, S. B. and Williams, R. J. P. (1984). Nature of micellar calcium phosphate in cows’ milk as studied by high-resolution microscopy. Biochim. Biophys. Acta, 801, 315–17

    Google Scholar 

  • MacDougal, M., Zeichner-David, M., Bringas, P. and Slavkin, H. (1985). In The Chemistry and Biology of Mineralized Tissues (ed. W. T. Butler), EBSCO-media, Birmingham, Alabama, pp. 177–81

    Google Scholar 

  • Madsen, H.-E. L. and Thorvardarson, G. (1984). Precipitation of calcium phosphate from moderately acid solution J. Cryst. Growth, 66, 369–76

    Google Scholar 

  • Marsh, M. E. (1986). Biomineralization in the presence of calcium-binding phosphoprotein particles. J. Exp. Zool., 239, 207–20

    Google Scholar 

  • Mason, I. J., Murphy, D., Munke, M., Francke, U., Elliott, R. W. and Hogan, B. L. M. (1986a). Developmental and transformation-sensitive expression of the SPARC gene on mouse chromosome 11. EMBO J., 5, 1831–7

    Google Scholar 

  • Mason, I. J., Tatlor, A., Williams, J. G., Sage, H. and Hogan, B. L. M. (1986b). Evidence from molecular cloning that SPARC, a major product of mouse embryo parietal endoderm, is related to an endothelial cell ‘culture shock’ glycoprotein of Mr 43,000. EMBO J., 5, 1465–72

    Google Scholar 

  • Mercier, J.-C. and Gaye, P. (1983). In Biochemistry of Lactation (ed. T. B. Mepham), Elsevier, Amsterdam, pp. 177–227

    Google Scholar 

  • Mercier, J.-C., Grosclaude, F. and Ribadeau Dumas, B. (1971). Structure primaire de la caseine αs1-bovine. Séquence complete. Eur. J. Biochem., 23, 41–51

    Google Scholar 

  • Mercier, J.-C., Brignon, G. and Ribadeau Dumas, B. (1973). Structure primaire de la caseine K-bovine. Sequence complete. Eur. J. Biochem., 35, 222–35

    Google Scholar 

  • Meyer, J. L. and Eanes, E. D. (1978). A thermodynamic analysis of the secondary transition in the spontaneous precipitation of calcium phosphate. Calcif. Tiss. Res., 25, 209–16

    Google Scholar 

  • Montalto, G., Multigner, L., Sarles, H. and De Carlo, A. (1984). Protein inhibitors of crystallization. Characterization and potential role in calcium lithiasis. Nephrologie, 5, 155–7

    Google Scholar 

  • Moreno, E. C., Kresak, M. and Hay, D. I. (1982). Adsorption thermodynamics of acidic proline-rich human salivary proteins onto calcium apatites. J. Biol. Chem., 257, 2981–9

    Google Scholar 

  • Moreno, E. C., Varughese, K. and Hay, D. I. (1979). Effect of human salivary proteins on the precipitation kinetics of calcium phosphate. Calcif. Tiss. Int., 28, 7–16

    Google Scholar 

  • Nawrot, C. F., Campbell, D. G., Schroeder, J. K. and Valkenburg, M. van (1976). Dental phosphoprotein-induced formation of hydroxylapatite during in vitro synthesis of amorphous calcium phosphate. Biochemistry, NY, 15, 3445–9

    Google Scholar 

  • Neville, M. C. and Staiert, P. A. (1983). Calcium requirement for lactose synthesis by isolated Golgi vesicles from mouse mammary gland. J. Cell Biol., 97, 442a

    Google Scholar 

  • Oppenheim, F. G., Offner, G. D. and Troxler, R. F. (1982). Phosphoproteins in the parotid saliva from the subhuman primate Macaca fascicularis. J. Biol. Chem., 257, 9271–82

    Google Scholar 

  • Orci, L. Ravazzola, M. and Anderson, R. G. W. (1987). The condensing vacuole of exocrine cells is more acidic than the mature secretory vesicle. Nature, Lond., 326, 77–9

    Google Scholar 

  • Otsuka, K., Yao, K.-L., Wasi, S., Tung, P. S., Aubin, J. E., Sodek, J. and Termine, J. D. (1984). Biosynthesis of osteonectin by fetal porcine calvarial cells in vitro. J. Biol. Chem., 259, 9805–12

    Google Scholar 

  • Parker, T. G. and Dalgleish, D. G. (1981). Binding of calcium ions to bovine β-casein. J. Dairy Res., 48, 71–6

    Google Scholar 

  • Payens, T. A. J. and Vreeman, H. J. (1982). In Solution Behavior of Surfactants (eds K. L. Mittal and E. J. Fendler), Plenum Press, New York, 543–71

    Google Scholar 

  • Perlmann, G. E. (1973). Phosvitin, a phosphoglycoprotein. Israeli. Chem., 11, 393–405

    Google Scholar 

  • Perlmann, G. E. and Grizzuti, K. (1971). Conformational transition of the phosphoprotein phosvitin. Random conformation→β structure. Biochemistry, NY, 10, 258–64

    Google Scholar 

  • Prescott, B., Renugopalakrishnan, V., Glimcher, M. J., Bhushan, A. and Thomas, G. J., Jr (1986). A Raman spectroscopic study of hen egg yolk phosvitin: structures in solution and in the solid state. Biochemistry, NY, 25, 2792–98

    Google Scholar 

  • Prince, C. W., Oosawa, T., Butler, W. T., Tomana, M., Bhown, A. S., Bhown, M. and Schrohenloher, R. E. (1987). Isolation, characterization, and biosynthesis of a phosphory-lated glycoprotein from rat bone. J. Biol. Chem., 262, 2900–7

    Google Scholar 

  • Raap, J., Kerling, K. E. T., Vreeman, H. J. and Visser, S. (1983). Peptide substrates for chymosin (rennin): Conformational studies of к-casein and some к-casein related oli-gopeptides by circular dichroism and secondary structure prediction. Archs Biochem. Biophys., 221, 117–24

    Google Scholar 

  • Renugopalakrishnan, V., Horowitz, P. M., and Glimcher, M. J. (1985). Structural studies of phosvitin in solution and in the solid state. J. Biol. Chem., 260, 11406–13

    Google Scholar 

  • Renugopalakrishnan, V., Uchiyama, A., Horowitz, P. M., Rapaka, R. S., Suzuki, M., Lefteriou, B. and Glimcher, M. J. (1986). Preliminary studies of the secondary structure in solution of two phosphoproteins of chicken bone matrix by circular dichroism and Fourier transform-infrared spectroscopy. Calcif. Tiss. Int., 39, 166–70

    Google Scholar 

  • Ribadeau Dumas, B., Brignon, G., Grosclaude, F. and Mercier, J.-C. (1972). Structure primaire de la caséine β bovine. Séquence complete. Eur. I. Biochem., 25, 505–14

    Google Scholar 

  • Rollema, H. S., Vreeman, H. J. and Brinkhuis, J. A. (1984). In 22nd Congress Ampère on Magnetic Resonance and Related Phenomena (eds K. A. Muller, R. Kind and J. Roos), Zurich Ampère Committee, Zurich, 494–5

    Google Scholar 

  • Romberg, R. W., Werness, P. G., Lollar, P., Riggs, B. L. and Mann, K. G. (1985). Isolation and characterization of native adult osteonectin. J. Biol. Chem., 260, 2728–36

    Google Scholar 

  • Romberg, R. W., Werness, P. G., Riggs, B. L. and Mann, K. G. (1986). Inhibition of hydroxyapatite crystal growth by bone-specific and other calcium-binding proteins. Biochemistry, NY, 25, 1176–80

    Google Scholar 

  • Rosenstein, R. W. and Taborsky, G. (1970). Nonphosphorylated serine residues in phosvitin. Biochemistry, NY, 9, 658–9

    Google Scholar 

  • Saitoh, E., Isemura, S. and Sanada, K. (1985). Inhibition of calcium-carbonate precipitation by human salivary proline-rich phosphoproteins. Archs Oral Biol., 30, 641–3

    Google Scholar 

  • Sawyer, L., Fothergill-Gilmore, L. A. and Russell, G. A. (1986). The predicted secondary structure of enolase. Biochem. J., 236, 127–30

    Google Scholar 

  • Schlesinger, D. H. and Hay, D. I. (1977). Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva. J. Biol. Chem., 252, 1689–95

    Google Scholar 

  • Schlesinger, D. H. and Hay, D. I. (1986). Complete covalent structure of a proline-rich phosphoprotein, PRP-2, an inhibitor of calcium phosphate crystal growth from human parotid saliva. Int. J. Peptide Protein Res., 27, 373–79

    Google Scholar 

  • Schmidt, D. G. (1982). In Developments in Dairy Chemistry, Vol. 1 (ed. P. F. Fox), Applied Science Publishers Ltd, Barking, UK, 61–86

    Google Scholar 

  • Slattery, C. W. and Evard, R. (1973). A model for the formation and structure of casein micelles from subunits of variable composition. Biochim. Biophys. Acta, 317, 529–38

    Google Scholar 

  • Sleigh, R. W., Mackinlay, A. G. and Pope, J. M. (1983). NMR studies of the phosphoserine regions of bovine αs1- and β-casein. Biochim. Biophys. Acta, 742, 175–83

    Google Scholar 

  • Sodek, J., Domenicucci, C., Zung, P., Kuwata, F. and Wasi, S. (1986). In Cell Mediated Calcification and Matrix Vesicles (ed. S. Yousuf Ali), Elsevier, Amsterdam, 135–41

    Google Scholar 

  • Stetler-Stevenson, W. G. and Veis, A. (1983). Bovine dentin phosphophoryn: Composition and molecular weight. Biochemistry, NY, 22, 4326–35

    Google Scholar 

  • Stetler-Stevenson, W. G. and Veis, A. (1987). Bovine dentin phosphophoryn: Calcium ion binding properties of a high molecular weight preparation. Calcif. Tiss. Int., 40, 97–102

    Google Scholar 

  • Taborsky, G. (1970). Effect of freezing and thawing on the conformation of phosvitin. J. Biol. Chem., 245, 1054–62

    Google Scholar 

  • Termine, J. D. and Posner, A. S. (1970). Calcium phosphate formation in vitro. I. Factors affecting initial phase separation. Archs Biochem. Biophys., 140, 307–17

    Google Scholar 

  • Termine, J. D. and Conn, K. M. (1976). Inhibition of apatite formation by phosphorylated metabolites and macromolecules. Calcif. Tiss. Res., 22, 149–57

    Google Scholar 

  • Termine, J. D., Eanes, E. D. and Conn, K. M. (1980). Phosphoprotein modulation of apatite crystallization. Calcif. Tiss. Int., 31, 247–51

    Google Scholar 

  • Termine, J. D., Kleinman, H. K., Whitson, S. W., Conn, K. M., McGarvey, M. L. and Martin, G. R. (1981). Osteonectin, a bone-specific protein linking mineral to collagen. Cell, 26, 99–105

    Google Scholar 

  • Traub, W. and Perimann, G. E. (1972). X-ray study of phosvitin, the phosphoglycoprotein in hens’ egg yolk. Israeli. Chem., 10, 655–58

    Google Scholar 

  • Uchiyama, A., Lefteriou, B. and Glimcher, M. J. (1985). In The Chemistry and Biology of Mineralized Tissues (ed. W. T. Butler), EBSCO-media, Birmingham, Alabama, 182–4

    Google Scholar 

  • Udich, H.-J., Hoft, H. D. and Bornig, H. (1986). Effect of phosphoprotein on precipitation and crystallization of calcium phosphate salts. An in vitro study using an agar gel matrix model. Biomed. Biochim. Acta., 45, 703–11

    Google Scholar 

  • Veis, A. (1985). In The Chemistry and Biology of Mineralized Tissues (ed. W. T. Butler), EBSCO-media, Birmingham, Albama, 170–6

    Google Scholar 

  • Vogel, H. J. (1983). Structure of hen phosvitin: A 31P NMR, 1H NMR, and laser photochemi-cally induced dynamic nuclear polarization 1H NMR study. Biochemistry, NY, 22, 668–74

    Google Scholar 

  • West, D. W. and Clegg, R. A. (1981). Golgi vesicles isolated from rat mammary tissue contain endogenous caseins and 0.1 mM free calcium. Biochem. Soc. Trans., 9, 468

    Google Scholar 

  • Williams, R. J. P. (1975). Phases and phase structure in biological systems. Biochim. Biophys. Acta, 416, 237–86

    Google Scholar 

  • Williams, S. P., Bridger, W. A. and James, M. N. G. (1986). Characterization of the phosphoserine of pepsinogen using 31P nuclear magnetic resonance: Corroboration of X-ray crystallographic results. Biochemistry, NY, 25, 6655–59

    Google Scholar 

  • Wong, R. S. C. and Bennick, A. (1980). The primary structure of a salivary calcium-binding proline-rich phosphoprotein (protein C), a possible precursor of a related salivary protein A. J. Biol. Chem., 255, 5943–8

    Google Scholar 

  • Wuthier, R. E. (1986). In Cell Mediated Calcification and Matrix Vesicles (ed. S. Yousuf Ali), Elsevier, Amsterdam, 47–55

    Google Scholar 

  • Zanette, D., Monaco, H. L., Zanotti, G. and Spadon, P. (1984). Crystallization of hen eggwhite riboflavin binding protein. J. molec. Biol., 180, 1185–7

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1989 The contributors

About this chapter

Cite this chapter

Holt, C., van Kemenade, M.J.J.M. (1989). The interaction of phosphoproteins with calcium phosphate. In: Hukins, D.W.L. (eds) Calcified Tissue. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-09868-2_8

Download citation

Publish with us

Policies and ethics