Skip to main content

Equatorial X-ray Diffraction Studies of Single Skinned Muscle Fibres

  • Chapter
Molecular Mechanisms in Muscular Contraction

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

  • 49 Accesses

Abstract

In intact muscle cells, the myofilaments, i.e. the thick and the thin filaments, are enclosed by the surface membrane, or sarcolemma. The myofilaments are therefore isolated from the solution bathing the fibres, and the internal environment of the myofilaments is not readily subject to manipulation. However, the sarcolemma can be removed mechanically or made permeable to relatively large molecules by chemical means. The internal elements of the muscle cells are left essentially intact and are directly exposed to experimental solutions. Such ‘skinning’ techniques have greatly facilitated studies on the contractile process in muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • April, E. W., Brandt, P. W. and Elliott, G. F. (1971). The myofilament lattice: studies on isolated fibres. J. Cell Biol., 51, 72–82

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • April, E. W. and Wong, D. (1976). Non-isovolumic behaviour of the unit cell of skinned striated muscle fibres. J. Mol. Biol., 101, 107:111

    Google Scholar 

  • Blinks, J. R. (1965). Influence of osmotic strength on cross-section and volume of isolated single muscle fibres. J. Physiol (Lond.), 177, 42–57

    Article  CAS  Google Scholar 

  • Brenner, B. (1980). Effect of free sarcoplasmic Ca2+ concentration on maximum unloaded shortening velocity: measurements on single glycerinated rabbit psoas muscle fibres. J. Muscle Res. Cell Motil., 1, 409–428

    Article  Google Scholar 

  • Brenner, B. (1983a). Technique for stabilizing the striation pattern in maximally calcium-activated skinned rabbit psoas fibers. Biophys. J., 41, 99–102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brenner, B (1983b). Crossbridge attachment during isotonic shortening in single skinned rabbit psoas fibers. Biophys. J., 41, 33a (abstract)

    Article  Google Scholar 

  • Brenner, B. (1988). Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: Implications for regulation of muscle contraction. Proc. Natl Acad. Sci. USA, 85, 3265–3269

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brenner, B., Schoenberg, M., Chalovich, J. M., Greene, L. E. and Eisenberg, E. (1982). Evidence for crossbridge attachment in relaxed muscle at low ionic strength. Proc. Natl Acad. Sci. USA, 79, 7288–91

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brenner, B. and Yu, L. C. (1985a). Equatorial X-ray diffraction from single skinned rabbit psoas fibers at various degrees of activation. Biophys. J., 48, 829–834

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brenner, B. and Yu, L. C. (1985b). Evidence for a radial crossbridge compliance with equilibrium position at 380 Å. Biophys. J., 47, 382a (abstract)

    Google Scholar 

  • Brenner, B., Yu, L. C. and Podolsky, R. J. (1984). X-ray diffraction evidence for cross-bridge formation in relaxed muscle fibers at various ionic strengths. Biophys. J., 46, 299–306

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carlsaw, H. S. and Jaeger, J. C. (1959). Am. J. Sci., 257, 44

    Article  Google Scholar 

  • Chalovich, J. M., Chock, P. B. and Eisenberg, E. (1981). Mechanism of action of troponin-tropomyosin. J. Biol. Chem., 256, 575–578

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chalovich, J. M. and Eisenberg, E. (1982). Inhibition of actomyosin ATPase activity by troponin-tropomyosin without blocking the binding of myosin to actin. J. Biol. Chem., 257, 2432–2437

    PubMed  CAS  PubMed Central  Google Scholar 

  • Civan, M. M. and Podolsky, R. J. (1966). Contraction kinetics of striated muscle fibres following quick changes in load. J. Physiol (Lond.), 184, 511–534

    Article  CAS  Google Scholar 

  • Eastwood, A. B., Wood, D. S., Bock, K. L. and Sorenson, M. M. (1979). Chemically skinned mammalian skeletal muscle. I. The structure of skinned rabbit psoas. Tissue Cell, 11, 553–566

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, E. and Hill, T. L. (1985). Muscular contraction and free energy transduction in biological systems. Science (Wash., D.C.), 277, 999–1006

    Article  Google Scholar 

  • Elliott, G. F., Lowy, J. and Worthington, R. (1963). An X-ray and light-diffraction study of the filament lattice of striated muscle in the living state and in rigor. J. Mol. Biol., 6, 295–305

    Article  Google Scholar 

  • Ford, L. E. and Podolsky, R. J. (1972). Calcium uptake and force development by skinned muscle fibres in EGTA buffered solutions. J. Physiol (Lond.), 223, 1–19

    Article  CAS  PubMed Central  Google Scholar 

  • Franks, A. (1958). Some developments and applications of microfocus X-ray diffraction techniques. Br. J. Appl. Phys., 9, 349–352

    Article  CAS  Google Scholar 

  • Glyn, H. and Sleep, J. (1985). Dependence of adenosine triphosphate activity of rabbit psoas muscle fibres and myofibrils on substrate concentration. J. Physiol (Lond.), 365, 259–276

    Article  CAS  Google Scholar 

  • Goldman, Y. E. and Simmons, R. M. (1984). Control of sarcomere length in skinned muscle fibres of Rana temporaria during mechanical transients. J. Physiol (Lond.), 350, 497–518

    Article  CAS  Google Scholar 

  • Goody, R. S., Reedy, M. C., Hofmann, W., Holmes, K. C. and Reedy, M. K. (1985). Binding of myosin subfragment 1 to glycerinated insect flight muscle in the rigor state. Biophys. J., 47, 151–169

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gordon, A. M., Huxley, A. F. and Julian, F. J. (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol (Lond.), 184, 170–192

    Article  CAS  Google Scholar 

  • Harford, J. J., Squire, J. M., Maeda, Y. and Towns-Andrews, L. (1988). Synchrotron radiation studies of the molecular basis of force production in fish muscle. Proc. 2nd Int. Conf. Biophysics and Synchrotron Radiation, Chester, 4–8 July 1988. pp. 148–153

    Google Scholar 

  • Haselgrove, J. C. (1970). X-ray diffraction studies on muscle. PhD Thesis, Cambridge University

    Google Scholar 

  • Haselgrove, J. C. and Huxley, H. E. (1973). X-ray evidence for radial crossbridge movement and for the sliding filament model in actively contracting skeletal muscle. J. Mol Biol., 77, 549–568

    Article  PubMed  CAS  Google Scholar 

  • Haselgrove, J. C., Stewart, M and Huxley, H. E. (1976). Crossbridge movement during muscle contraction. Nature, 261, 606–608

    Article  PubMed  CAS  Google Scholar 

  • Hibberd, M. G., Webb, M. R., Goldman, Y. E. and Trentham, D. R. (1985) Oxygen exchange between phosphate and water accompanies calcium-regulated ATPase activity of skinned fibers from rabbit skeletal muscle. J. Biol. Chem., 260, 3496–3500

    PubMed  CAS  Google Scholar 

  • Higuchi, H. (1987). Lattice swelling with the selective digestion of elastic components in single-skinned fibres of frog muscle. Biophys. J., 52, 29–32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Higuchi, H. and Umazume, Y. (1986). Lattice shrinkage with increasing resting tension in stretched, single skinned fibres of frog muscle. Biophys. J., 50, 385–389

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Horowits, R., Kempner, E. S., Bisher, M. E. and Podolsky, R. J. (1986). A physiological role for titin and nebulin in skeletal muscle. Nature, 323, 160–164

    Article  PubMed  CAS  Google Scholar 

  • Horowits, R. and Podolsky, R. J. (1987). The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J. Cell Biol., 105, 2217–2223

    Article  PubMed  CAS  Google Scholar 

  • Huxley, A. F. (1957). Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem., 7, 255–318

    PubMed  CAS  Google Scholar 

  • Huxley, A. F. and Simmons, R. M. (1971). Proposed mechanism of force generation in striated muscle. Nature, 233, 533–538

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. (1957). The double array of filaments in cross-striated muscle. J. Biophys. Biochem. Cytol., 3, 631–647

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huxley, H. E. (1968). Structural difference between resting and rigor muscle; evidence from intensity changes in the low-angle equatorial X-ray diagram. J. Mol. Biol., 37, 507–520

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. (1969). The mechanism of muscular contraction. Science (Wash., D.C.), 164, 1356–1366

    Article  CAS  Google Scholar 

  • Huxley, H. E. (1979). Time resolved X-ray diffraction studies on muscle. In Sugi, H. and Pollack, G. H. (Eds.), Crossbridge Mechanism in Muscle Contraction. University of Tokyo Press, Tokyo, pp. 391–405

    Google Scholar 

  • Huxley, H. E. and Brown, W. (1967). The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J. Mol. Biol., 30, 383–434

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. and Faruqi, A. R. (1983). Time-resolved X-ray diffraction studies on vertebrate striated muscle. Ann. Rev. Biophys. Bioeng., 12, 381–417

    Article  CAS  Google Scholar 

  • Huxley, H. E., Faruqi, A. R., Bordas, J., Koch, M. H. J. and Milch, J. R. (1980). The use of synchrotron radiation in time-resolved X-ray diffraction studies of myosin layer-line reflections during muscle contraction. Nature, 284, 140–143

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E., Faruqi, A. R., Kress, M., Bordas, J. and Koch, M. H. J. (1982). Time-resolved X-ray diffraction studies of the myosin layer-line reflections during muscle contraction. J. Mol. Biol., 159, 637–684

    Article  Google Scholar 

  • Julian, F. J. (1971). The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres. J. Physiol (Lond.), 218, 117–145

    Article  CAS  Google Scholar 

  • Kushmerick, M. J. and Podolsky, R. J. (1969). Ionic mobility in muscle cells. Science (Wash. D.C.), 166, 1297–1298

    Article  CAS  Google Scholar 

  • Lymn, R. W. (1978). Myosin subfragment-1 attachment to actin: expected effect on equatorial reflections. Biophys. J., 21, 93–98

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Magid, A. and Reedy, M. K. (1980). X-ray diffraction observations of chemically skinned frog skeletal muscle processed by an improved method. Biophys. J., 30, 27–40

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Magid, A., Ting-Beali, H. P., Carvell, M., Kontis, T. and Lucaveche, C. (1984). Connecting filaments, core filaments, and side struts: a proposal to add three new load bearing structures to the sliding filament model. In Pollack, G. H. and Sugi, H. (Eds.), Contractile Mechanisms in Muscle. Plenum Press, New York, pp. 307–328

    Chapter  Google Scholar 

  • Maruyama, K. (1986). Connectin, an elastic filamentous protein of striated muscle. Int. Rev. Cytol., 104, 81–114

    Article  PubMed  CAS  Google Scholar 

  • Matsubara, I. and Elliott, G. F. (1972). X-ray diffraction studies on skinned single fibers of frog skeletal muscle. J. Mol. Biol., 72, 657–662

    Article  PubMed  CAS  Google Scholar 

  • Matsubara, I., Goldman, Y. E. and Simmons, R. M. (1984). Changes in the lateral filament spacing of skinned muscle fibers when cross-bridges attach. J. Mol. Biol., 173, 15–33

    Article  PubMed  CAS  Google Scholar 

  • Matsubara, I., Umazume, Y. and Yagi, N. (1985). Lateral filamentary spacing in chemically skinned murine muscles during contraction. J. Physiol. (Lond.), 360, 135–148

    Article  CAS  Google Scholar 

  • Matsuda, T. and Podolsky, R. J. (1984). X-ray evidence for two structural states of the actomyosin cross-bridge in muscle fibres. Proc. Natl Acad. Sci. USA, 81, 2364–2368

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maughan, D. W. and Godt, R. E. (1981). Radial forces within muscle fibers in rigor. J. Gen. Physiol., 77, 49–64

    Article  PubMed  CAS  Google Scholar 

  • Natori, R. (1954). The property and contraction process of isolated myofibrils. Jikeikai Med. J., 1, 119–126

    Google Scholar 

  • Podolsky, R. J. (1964). The maximum sarcomere length for contraction of isolated myofibrils. J. Physiol. (Lond.), 170, 110–123

    Article  CAS  Google Scholar 

  • Podolsky, R. J. (1968). Membrane systems in muscle cells. In Aspects of Cell Motility. Cambridge University Press, pp. 87–99

    Google Scholar 

  • Podolsky, R. J. and Arata, T. (1988). Force generating mechanisms in striated muscle. In Sugi, H. and Pollack, G. H. (Eds.), Molecular Mechanism of Muscle Contraction. Plenum Press, New York, pp. 319–328

    Google Scholar 

  • Podolsky, R. J. and Teichholz, L. E. (1970). The relation between calcium and contraction kinetics in skinned muscle fibres. J. Physiol. (Lond.), 211, 19–35

    Article  CAS  Google Scholar 

  • Podolsky, R. J., St. Onge, R., Yu, L. C., and Lymn, R. W. (1976). X-ray diffraction of actively shortening muscle. Proc. Natl Acad. Sci. USA, 73, 813–817

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rome, E. (1972). Relaxation of glycerinated muscle: low angle X-ray diffraction studies. J. Mol. Biol., 65, 331–345

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld, S. S. and Taylor, E. W. (1984). The ATPase mechanism of skeletal and smooth muscle acto-subfragment 1. J. Biol. Chem., 259, 11908–11919

    PubMed  CAS  Google Scholar 

  • Schoenberg, M. (1988). Characterization of the myosin adenosine triphosphate (M•ATP) crossbridge in rabbit and frog skeletal muscle fibers. Biophys. J., 54, 135–148

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shapiro, P., Tawada, K. and Podolsky, R. J. (1979). X-ray diffraction of skinned fibers. Biophy. J., 25 (2, Pt. 2), 18a (abstract)

    Google Scholar 

  • Sherwood, D. (1976). Crystals, X-rays and Proteins. Wiley, New York

    Google Scholar 

  • Squire, J. M. (1981). The Structural Basis of Muscular Contraction. Plenum Press, London

    Book  Google Scholar 

  • Squire, J. M., Podolsky, R. J., Yu, L. C. and Brenner, B. (1987). Equatorial X-ray diffraction from resting skinned single fibers of fish muscle: little evidence for crossbridge attachment at low ionic strength. J. Muscle Res. Cell Motil., 8, 66

    Google Scholar 

  • Szent-Gyorgyi, A. (1951). Chemistry of Muscular Contraction. Academic Press, New York

    Google Scholar 

  • Trus, B. L., Steven, A. C., McDowall, A. W., Unser, M., Dubochet, J. and Podolsky, R. J. (1989). Interaction between actin and myosin filaments in skeletal muscle visualized in frozen-hydrated thin section. Biophys. J., 55, 715–724

    Article  Google Scholar 

  • Wang, K. (1985). Sarcomere associated cytoskeletal lattices in striated muscle. In Shay, J. W. (Ed.), Cell and Muscle Motility, Vol. 6. Plenum Press, New York, pp. 315–369

    Chapter  Google Scholar 

  • Xu, S. G., Kress, M. and Huxley, H. E., (1987). X-ray diffraction studies of the structural state of cross-bridges in skinned frog sartorius muscle at low ionic strength. J. Muscle Res. Cell Motil., 8, 39–54

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka, T., Higuchi, H., Kimura, S., Ohashi, K., Umazume, Y. and Maruyama, K. (1986). Effects of mild trypsin treatment on the passive tension generation and connectin splitting in stretched skinned fibers from frog skeletal muscle. Biomed. Res., 7, 181–186

    CAS  Google Scholar 

  • Yu, L. C. (1989). Analysis of equatorial X-ray diffraction patterns from skeletal muscle. Biophys. J., 55, 433–440

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yu, L. C. and Brenner, B. (1986). High resolution equatorial X-ray diffraction from single skinned rabbit psoas fibers. Biophys. J., 49, 133–135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yu, L. C. and Brenner, B. (1987). Equatorial X-ray diffraction from fully Ca+ + activated single muscle fibres at low ionic strengths. Biophys. J., 51, 473a

    Article  Google Scholar 

  • Yu, L. C. and Brenner, B. (1989). Structures of actomyosin crossbridges in relaxed and rigor muscle fibers. Biophys. J., 55, 441–453

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yu, L. C., Hartt, J. and Podolsky, R. J. (1979). Equatorial X-ray intensities and isometric force levels in frog sartorius muscle. J. Mol. Biol., 132, 53–67

    Article  PubMed  CAS  Google Scholar 

  • Yu, L. C., Steven, A. C., Naylor, G. R. S., Gamble, R. C. and Podolsky, R. J. (1985). Distribution of mass in relaxed frog skeletal muscle and its redistribution upon activation. Biophys. J., 47, 311–321

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1990 The editor and contributors

About this chapter

Cite this chapter

Yu, L.C., Podolsky, R.J. (1990). Equatorial X-ray Diffraction Studies of Single Skinned Muscle Fibres. In: Squire, J.M. (eds) Molecular Mechanisms in Muscular Contraction. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-09814-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-09814-9_9

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-09816-3

  • Online ISBN: 978-1-349-09814-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics