Skip to main content

Generation of Orthotopic and Subcutaneous Patient-Derived Xenograft Models from Diverse Clinical Tissue Samples of Pediatric Extracranial Solid Tumors

  • Protocol
  • First Online:
Patient-Derived Xenografts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2806))

Abstract

Realistic and renewable laboratory models that accurately reflect the distinct clinical features of childhood cancers have enormous potential to speed research progress. These models help us to understand disease biology, develop new research methods, advance new therapies to clinical trial, and implement personalized medicine. This chapter describes methods to generate patient-derived xenograft models of neuroblastoma and rhabdomyosarcoma, two tumor types for which children with high-risk disease have abysmal survival outcomes and survivors have lifelong-debilitating effects from treatment. Further, this protocol addresses model development from diverse clinical tumor tissue samples, subcutaneous and orthotopic engraftment, and approaches to avoid model loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ward ZJ, Yeh JM, Bhakta N et al (2019) Global childhood cancer survival estimates and priority-setting: a simulation-based analysis. Lancet Oncol 20(7):972–983. https://doi.org/10.1016/s1470-2045(19)30273-6

    Article  PubMed  Google Scholar 

  2. Hidalgo M, Amant F, Biankin AV et al (2014) Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 4(9):998–1013. https://doi.org/10.1158/2159-8290.Cd-14-0001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang X, Claerhout S, Prat A et al (2013) A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res 73(15):4885–4897. https://doi.org/10.1158/0008-5472.Can-12-4081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Izumchenko E, Paz K, Ciznadija D et al (2017) Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann Oncol 28(10):2595–2605. https://doi.org/10.1093/annonc/mdx416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lau LMS, Mayoh C, Xie J et al (2022) In vitro and in vivo drug screens of tumor cells identify novel therapies for high-risk child cancer. EMBO Mol Med 14(4):e14608. https://doi.org/10.15252/emmm.202114608

    Article  CAS  PubMed  Google Scholar 

  6. Steliarova-Foucher E, Colombet M, Ries LAG et al (2017) International incidence of childhood cancer, 2001–10: a population-based registry study. Lancet Oncol 18(6):719–731. https://doi.org/10.1016/s1470-2045(17)30186-9

    Article  PubMed  PubMed Central  Google Scholar 

  7. Park JR, Eggert A, Caron H (2010) Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am 24(1):65–86. https://doi.org/10.1016/j.hoc.2009.11.011

    Article  PubMed  Google Scholar 

  8. Dasgupta R, Fuchs J, Rodeberg D (2016) Rhabdomyosarcoma. Semin Pediatr Surg 25(5):276–283. https://doi.org/10.1053/j.sempedsurg.2016.09.011

    Article  PubMed  Google Scholar 

  9. Pinto NR, Applebaum MA, Volchenboum SL et al (2015) Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol 33(27):3008–3017. https://doi.org/10.1200/jco.2014.59.4648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Punyko JA, Mertens AC, Baker KS et al (2005) Long-term survival probabilities for childhood rhabdomyosarcoma. A population-based evaluation. Cancer 103(7):1475–1483. https://doi.org/10.1002/cncr.20929

    Article  PubMed  Google Scholar 

  11. London WB, Bagatell R, Weigel BJ et al (2017) Historical time to disease progression and progression-free survival in patients with recurrent/refractory neuroblastoma treated in the modern era on Children’s Oncology Group early-phase trials. Cancer 123(24):4914–4923. https://doi.org/10.1002/cncr.30934

    Article  CAS  PubMed  Google Scholar 

  12. Raney RB, Anderson JR, Barr FG et al (2001) Rhabdomyosarcoma and undifferentiated sarcoma in the first two decades of life: a selective review of intergroup rhabdomyosarcoma study group experience and rationale for Intergroup Rhabdomyosarcoma Study V. J Pediatr Hematol Oncol 23(4):215–220. https://doi.org/10.1097/00043426-200105000-00008

    Article  CAS  PubMed  Google Scholar 

  13. Cohen LE, Gordon JH, Popovsky EY et al (2014) Late effects in children treated with intensive multimodal therapy for high-risk neuroblastoma: high incidence of endocrine and growth problems. Bone Marrow Transplant 49(4):502–508. https://doi.org/10.1038/bmt.2013.218

    Article  CAS  PubMed  Google Scholar 

  14. Applebaum MA, Henderson TO, Lee SM et al (2015) Second malignancies in patients with neuroblastoma: the effects of risk-based therapy. Pediatr Blood Cancer 62(1):128–133. https://doi.org/10.1002/pbc.25249

    Article  PubMed  Google Scholar 

  15. Clement S, Schoot R, Slater O et al (2016) Endocrine disorders among long-term survivors of childhood head and neck rhabdomyosarcoma. Eur J Cancer 54:1–10

    Article  CAS  PubMed  Google Scholar 

  16. Schoot RA, Slater O, Ronckers CM et al (2015) Adverse events of local treatment in long-term head and neck rhabdomyosarcoma survivors after external beam radiotherapy or AMORE treatment. Eur J Cancer 51(11):1424–1434

    Article  PubMed  Google Scholar 

  17. Youn P, Milano MT, Constine LS et al (2014) Long-term cause-specific mortality in survivors of adolescent and young adult bone and soft tissue sarcoma: a population-based study of 28,844 patients. Cancer 120(15):2334–2342

    Article  PubMed  Google Scholar 

  18. Kamili A, Gifford AJ, Li N et al (2020) Accelerating development of high-risk neuroblastoma patient-derived xenograft models for preclinical testing and personalised therapy. Br J Cancer 122(5):680–691. https://doi.org/10.1038/s41416-019-0682-4

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stewart E, Federico SM, Chen X et al (2017) Orthotopic patient-derived xenografts of paediatric solid tumours. Nature 549(7670):96–100. https://doi.org/10.1038/nature23647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meehan TF, Conte N, Goldstein T et al (2017) PDX-MI: minimal information for patient-derived tumor xenograft models. Cancer Res 77(21):e62–e66. https://doi.org/10.1158/0008-5472.CAN-17-0582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bondarenko G, Ugolkov A, Rohan S et al (2015) Patient-derived tumor xenografts are susceptible to formation of human lymphocytic tumors. Neoplasia 17(9):735–741. https://doi.org/10.1016/j.neo.2015.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mukohyama J, Iwakiri D, Zen Y et al (2016) Evaluation of the risk of lymphomagenesis in xenografts by the PCR-based detection of EBV BamHI W region in patient cancer specimens. Oncotarget 7(31):50150–50160. https://doi.org/10.18632/oncotarget.10322

    Article  PubMed  PubMed Central  Google Scholar 

  23. Butler KA, Hou X, Becker MA et al (2017) Prevention of human lymphoproliferative tumor formation in ovarian cancer patient-derived xenografts. Neoplasia 19(8):628–636. https://doi.org/10.1016/j.neo.2017.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ito R, Katano I, Kawai K et al (2009) Highly sensitive model for xenogenic GVHD using severe immunodeficient NOG mice. Transplantation 87(11):1654–1658. https://doi.org/10.1097/TP.0b013e3181a5cb07

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the patients, clinicians, and researchers of the Sydney Children’s Hospital Network, the Sydney Children’s Tumour Bank Network, and the Zero Childhood Cancer initiative for providing samples with which we were able to establish this methodology. Children’s Cancer Institute Australia is affiliated with the University of New South Wales Sydney and the Sydney Children’s Hospital Network.

This protocol was developed from studies supported by the Kids Cancer Alliance, a Cancer Institute New South Wales Translational Cancer Research Centre and by Neuroblastoma Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvin Kamili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hanssen, K.M., Fletcher, J.I., Kamili, A. (2024). Generation of Orthotopic and Subcutaneous Patient-Derived Xenograft Models from Diverse Clinical Tissue Samples of Pediatric Extracranial Solid Tumors. In: Saad, M.I. (eds) Patient-Derived Xenografts. Methods in Molecular Biology, vol 2806. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3858-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3858-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3857-6

  • Online ISBN: 978-1-0716-3858-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics