Skip to main content

Measuring Connexin Hemichannel Opening in Response to an InsP3-Mediated Cytosolic Ca2+ Increase

  • Protocol
  • First Online:
Connexin Hemichannels

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2801))

  • 108 Accesses

Abstract

The opening of connexin hemichannels (HCs) expressed at the plasma membrane of mammalian cells is regulated by a number of physiological parameters, including extracellular and intracellular Ca2+ ions. Submicromolar variations of the cytosolic Ca2+ concentration ([Ca2+]c) are per se sufficient to trigger extracellular bursts of messenger molecules through connexin HCs, thus mediating paracrine signaling. In this chapter, we present a quantitative method to measure the opening dynamics of connexin HCs expressed in a single HeLa cell upon stimulation by a canonical InsP3-mediated [Ca2+]c transient. The protocol relies on a combination of Ca2+ imaging and patch-clamp techniques. The insights gained from our method are expected to make a significant contribution to understanding the structure–function relationship of connexin HCs. The protocol is also suitable to screen candidate therapeutic compounds to treat connexin-related diseases linked to HC dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delmar M et al (2018) Connexins and disease. Cold Spring Harb Perspect Biol 10(9)

    Google Scholar 

  2. Harris AL (2007) Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol 94(1–2):120–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alexander DB, Goldberg GS (2003) Transfer of biologically important molecules between cells through gap junction channels. Curr Med Chem 10(19):2045–2058

    Article  CAS  PubMed  Google Scholar 

  4. Cotrina ML et al (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci USA 95(26):15735–15740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Valiunas V (2013) Cyclic nucleotide permeability through unopposed connexin hemichannels. Front Pharmacol 4:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ye ZC et al (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23(9):3588–3596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takeuchi H et al (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281(30):21362–21368

    Article  CAS  PubMed  Google Scholar 

  8. Bruzzone S et al (2001) Connexin 43 hemi channels mediate Ca2+−regulated transmembrane NAD+ fluxes in intact cells. FASEB J 15(1):10–12

    Article  CAS  PubMed  Google Scholar 

  9. Zocchi E et al (2001) Paracrinally stimulated expansion of early human hemopoietic progenitors by stroma-generated cyclic ADP-ribose. FASEB J 15(9):1610–1612

    Article  CAS  PubMed  Google Scholar 

  10. Rana S, Dringen R (2007) Gap junction hemichannel-mediated release of glutathione from cultured rat astrocytes. Neurosci Lett 415(1):45–48

    Article  CAS  PubMed  Google Scholar 

  11. Orellana JA, Stehberg J (2014) Hemichannels: new roles in astroglial function. Front Physiol 5:193

    Article  PubMed  PubMed Central  Google Scholar 

  12. Meunier C et al (2017) Contribution of Astroglial Cx43 Hemichannels to the modulation of glutamatergic currents by D-serine in the mouse prefrontal cortex. J Neurosci 37(37):9064–9075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cherian PP et al (2005) Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 16(7):3100–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burra S, Jiang JX (2009) Connexin 43 hemichannel opening associated with prostaglandin E(2) release is adaptively regulated by mechanical stimulation. Commun Integr Biol 2(3):239–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Contreras JE et al (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci USA 100(20):11388–11393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Valiunas V, Weingart R (2000) Electrical properties of gap junction hemichannels identified in transfected HeLa cells. Pflugers Arch 440(3):366–379

    Article  CAS  PubMed  Google Scholar 

  17. Gomez-Hernandez JM et al (2003) Molecular basis of calcium regulation in connexin-32 hemichannels. Proc Natl Acad Sci USA 100(26):16030–16035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lopez W et al (2016) Mechanism of gating by calcium in connexin hemichannels. Proc Natl Acad Sci USA 113:E7986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carrer A et al (2018) Cx32 hemichannel opening by cytosolic Ca2+ is inhibited by the R220X mutation that causes Charcot-Marie-tooth disease. Hum Mol Genet 27(1):80–94

    Article  CAS  PubMed  Google Scholar 

  20. De Vuyst E et al (2006) Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO J 25(1):34–44

    Article  PubMed  Google Scholar 

  21. De Vuyst E et al (2009) Ca(2+) regulation of connexin 43 hemichannels in C6 glioma and glial cells. Cell Calcium 46(3):176–187

    Article  PubMed  Google Scholar 

  22. Kleopa KA, Abrams CK, Scherer SS (2012) How do mutations in GJB1 cause X-linked Charcot-Marie-tooth disease? Brain Res 1487:198–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meier C et al (2004) Connexin32-containing gap junctions in Schwann cells at the internodal zone of partial myelin compaction and in Schmidt-Lanterman incisures. J Neurosci 24(13):3186–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Balice-Gordon RJ, Bone LJ, Scherer SS (1998) Functional gap junctions in the schwann cell myelin sheath. J Cell Biol 142(4):1095–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nualart-Marti A et al (2013) Role of connexin 32 hemichannels in the release of ATP from peripheral nerves. Glia 61(12):1976–1989

    Article  PubMed  Google Scholar 

  26. Lev-Ram V, Ellisman MH (1995) Axonal activation-induced calcium transients in myelinating Schwann cells, sources, and mechanisms. J Neurosci 15(4):2628–2637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mayer C et al (1997) Intracellular calcium transients mediated by P2 receptors in the paranodal Schwann cell region of myelinated rat spinal root axons. Neurosci Lett 224(1):49–52

    Article  CAS  PubMed  Google Scholar 

  28. Stevens B, Fields RD (2000) Response of Schwann cells to action potentials in development. Science 287(5461):2267–2271

    Article  CAS  PubMed  Google Scholar 

  29. Ino D et al (2015) Neuronal regulation of Schwann cell mitochondrial Ca(2+) signaling during myelination. Cell Rep 12(12):1951–1959

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants awarded to Mario Bortolozzi by the French Telethon Foundation and by Theraphies for Inherited Neuropathies (TIN US) non-profit organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Bortolozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bayraktar, E., Bortolozzi, M. (2024). Measuring Connexin Hemichannel Opening in Response to an InsP3-Mediated Cytosolic Ca2+ Increase. In: Mammano, F., Retamal, M. (eds) Connexin Hemichannels. Methods in Molecular Biology, vol 2801. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3842-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3842-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3841-5

  • Online ISBN: 978-1-0716-3842-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics