Skip to main content

Behavioral Analysis of NMDAR Function in Rodents: Tests of Long-Term Spatial Memory

  • Protocol
  • First Online:
NMDA Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2799))

  • 140 Accesses

Abstract

NMDAR-dependent forms of synaptic plasticity in brain regions like the hippocampus are widely believed to provide the neural substrate for long-term associative memory formation. However, the experimental data are equivocal at best and may suggest a more nuanced role for NMDARs and synaptic plasticity in memory. Much of the experimental data available comes from studies in genetically modified mice in which NMDAR subunits have been deleted or mutated in order to disrupt NMDAR function. Behavioral assessment of long-term memory in these mice has involved tests like the Morris watermaze and the radial arm maze. Here we describe these behavioral tests and some of the different testing protocols that can be used to assess memory performance. We discuss the importance of distinguishing selective effects on learning and memory processes from nonspecific effects on sensorimotor or motivational aspects of performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collingridge GL, Kehl SJ, McLennan H (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 334:33–46. https://doi.org/10.1113/jphysiol.1983.sp014478. PMID: 6306230; PMCID: PMC1197298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39. https://doi.org/10.1038/361031a0. PMID: 8421494

    Article  CAS  PubMed  Google Scholar 

  3. Harris EW, Ganong AH, Cotman CW (1984) Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res 323(1):132–137. https://doi.org/10.1016/0006-8993(84)90275-0. PMID: 6151863

    Article  CAS  PubMed  Google Scholar 

  4. Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711. https://doi.org/10.1146/annurev.neuro.23.1.649. PMID: 10845078

    Article  CAS  PubMed  Google Scholar 

  5. Bannerman DM, Sprengel R, Sanderson DJ, McHugh SB, Rawlins JN, Monyer H, Seeburg PH (2014) Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci 15(3):181–192. https://doi.org/10.1038/nrn3677. PMID: 24552786

    Article  CAS  PubMed  Google Scholar 

  6. O'Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon Press, Oxford

    Google Scholar 

  7. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60. https://doi.org/10.1016/0165-0270(84)90007-4. PMID: 6471907

    Article  CAS  PubMed  Google Scholar 

  8. Olton DS, Samuelson RJ (1976) Remembrance of places passed - spatial memory in rats. J Exp Psychol Anim Behav Proc 2(2):97–116

    Article  Google Scholar 

  9. Morris RG, Garrud P, Rawlins JN, O'Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297(5868):681–683. https://doi.org/10.1038/297681a0. PMID: 7088155

    Article  CAS  PubMed  Google Scholar 

  10. Morris RG, Schenk F, Tweedie F, Jarrard LE (1990) Ibotenate lesions of hippocampus and/or subiculum: dissociating components of Allocentric spatial learning. Eur J Neurosci 2(12):1016–1028. https://doi.org/10.1111/j.1460-9568.1990.tb00014.x. PMID: 12106063

    Article  PubMed  Google Scholar 

  11. Olton DS, Becker JT, Handelmann GE (1979) Hippocampus, space, and memory. Behav Brain Sci 2(3):313–365

    Article  Google Scholar 

  12. Pothuizen HH, Zhang WN, Jongen-Rêlo AL, Feldon J, Yee BK (2004) Dissociation of function between the dorsal and the ventral hippocampus in spatial learning abilities of the rat: a within-subject, within-task comparison of reference and working spatial memory. Eur J Neurosci 19(3):705–712. https://doi.org/10.1111/j.0953-816x.2004.03170.x. PMID: 14984421

    Article  PubMed  Google Scholar 

  13. Schmitt WB, Deacon RM, Seeburg PH, Rawlins JN, Bannerman DM (2003) A within-subjects, within-task demonstration of intact spatial reference memory and impaired spatial working memory in glutamate receptor-A-deficient mice. J Neurosci 23(9):3953–3959. https://doi.org/10.1523/JNEUROSCI.23-09-03953.2003. PMID: 12736365; PMCID: PMC6742186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saucier D, Cain DP (1995) Spatial learning without NMDA receptor-dependent long-term potentiation. Nature 378(6553):186–189. https://doi.org/10.1038/378186a0. PMID: 7477321

    Article  CAS  PubMed  Google Scholar 

  15. Bannerman DM, Good MA, Butcher SP, Ramsay M, Morris RG (1995) Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature 378(6553):182–186. https://doi.org/10.1038/378182a0. PMID: 7477320

    Article  CAS  PubMed  Google Scholar 

  16. Bannerman DM, Rawlins JN, Good MA (2006) The drugs don't work-or do they? Pharmacological and transgenic studies of the contribution of NMDA and GluR-A-containing AMPA receptors to hippocampal-dependent memory. Psychopharmacology 188(4):552–566. https://doi.org/10.1007/s00213-006-0403-6. Epub 2006 May 5. PMID: 16676163

    Article  CAS  PubMed  Google Scholar 

  17. Morris RG (1989) Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J Neurosci 9(9):3040–3057. https://doi.org/10.1523/JNEUROSCI.09-09-03040.1989. PMID: 2552039; PMCID: PMC6569656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morris RG, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319(6056):774–776. https://doi.org/10.1038/319774a0. PMID: 2869411

    Article  CAS  PubMed  Google Scholar 

  19. Bannerman DM, Bus T, Taylor A, Sanderson DJ, Schwarz I, Jensen V, Hvalby Ø, Rawlins JN, Seeburg PH, Sprengel R (2012) Dissecting spatial knowledge from spatial choice by hippocampal NMDA receptor deletion. Nat Neurosci 15(8):1153–1159. https://doi.org/10.1038/nn.3166. PMID: 22797694; PMCID: PMC3442238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. von Engelhardt J, Doganci B, Jensen V, Hvalby Ø, Göngrich C, Taylor A, Barkus C, Sanderson DJ, Rawlins JN, Seeburg PH, Bannerman DM, Monyer H (2008) Contribution of hippocampal and extra-hippocampal NR2B-containing NMDA receptors to performance on spatial learning tasks. Neuron 60(5):846–860. https://doi.org/10.1016/j.neuron.2008.09.039. PMID: 19081379

    Article  CAS  Google Scholar 

  21. Huerta PT, Scearce KA, Farris SM, Empson RM, Prusky GT (1996) Preservation of spatial learning in fyn tyrosine kinase knockout mice. Neuroreport 7(10):1685–1689. https://doi.org/10.1097/00001756-199607080-00032. PMID: 8904782

    Article  CAS  PubMed  Google Scholar 

  22. Morris RG, Davis S, Butcher SP (1990) Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? Philos Trans R Soc Lond Ser B Biol Sci 329(1253):187–204. https://doi.org/10.1098/rstb.1990.0164. PMID: 1978364

    Article  CAS  Google Scholar 

  23. Gray JA, McNaughton N (2000) The neuropsychology of anxiety, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  24. Moosmang S, Haider N, Klugbauer N, Adelsberger H, Langwieser N, Müller J, Stiess M, Marais E, Schulla V, Lacinova L, Goebbels S, Nave KA, Storm DR, Hofmann F, Kleppisch T (2005) Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. J Neurosci 25(43):9883–9892. https://doi.org/10.1523/JNEUROSCI.1531-05.2005. PMID: 16251435; PMCID: PMC6725564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morris RG, Hagan JJ, Rawlins JN (1986) Allocentric spatial learning by hippocampectomised rats: a further test of the "spatial mapping" and "working memory" theories of hippocampal function. Q J Exp Psychol B 38(4):365–395. PMID: 3809580

    CAS  PubMed  Google Scholar 

  26. Hurst JL, West RS (2010) Taming anxiety in laboratory mice. Nat Methods 7(10):825–826. https://doi.org/10.1038/nmeth.1500. Epub 2010 Sep 12. PMID: 20835246

    Article  CAS  PubMed  Google Scholar 

  27. Gouveia K, Hurst JL (2019) Improving the practicality of using non-aversive handling methods to reduce background stress and anxiety in laboratory mice. Sci Rep 9(1):20305. https://doi.org/10.1038/s41598-019-56860-7. PMID: 31889107; PMCID: PMC6937263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Niewoehner B, Single FN, Hvalby Ø, Jensen V, Meyer zum Alten Borgloh S, Seeburg PH, Rawlins JN, Sprengel R, Bannerman DM (2007) Impaired spatial working memory but spared spatial reference memory following functional loss of NMDA receptors in the dentate gyrus. Eur J Neurosci 25(3):837–846. https://doi.org/10.1111/j.1460-9568.2007.05312.x. PMID: 17313573; PMCID: PMC2777262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sanderson DJ, Bannerman DM (2011) Competitive short-term and long-term memory processes in spatial habituation. J Exp Psychol Anim Behav Process 37(2):189–199. https://doi.org/10.1037/a0021461. PMID: 21319917; PMCID: PMC3085505

    Article  PubMed  PubMed Central  Google Scholar 

  30. Eltokhi A, Rappold G, Sprengel R (2018) Distinct phenotypes of Shank2 Mouse Models reflect neuropsychiatric Spectrum disorders of human patients with SHANK2 variants. Front Mol Neurosci 11:240. https://doi.org/10.3389/fnmol.2018.00240. PMID: 30072871; PMCID: PMC6060255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eltokhi A, Kurpiers B, Pitzer C (2020) Behavioral tests assessing neuropsychiatric phenotypes in adolescent mice reveal strain- and sex-specific effects. Sci Rep 10(1):11263. https://doi.org/10.1038/s41598-020-67758-0. PMID: 32647155; PMCID: PMC7347854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chapillon P, Roullet P (1996) Use of proximal and distal cues in place navigation by mice changes during ontogeny. Dev Psychobiol 29(6):529–545. https://doi.org/10.1002/(SICI)1098-2302(199609)29:6<529::AID-DEV5>3.0.CO;2-O. PMID: 8872426

    Article  CAS  PubMed  Google Scholar 

  33. Barnhart CD, Yang D, Lein PJ (2015) Using the Morris water maze to assess spatial learning and memory in weanling mice. PLoS One 10(4):e0124521. https://doi.org/10.1371/journal.pone.0124521. PMID: 25886563; PMCID: PMC4401674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Salmaso N, Silbereis J, Komitova M, Mitchell P, Chapman K, Ment LR, Schwartz ML, Vaccarino FM (2012) Environmental enrichment increases the GFAP+ stem cell pool and reverses hypoxia-induced cognitive deficits in juvenile mice. J Neurosci 32(26):8930–8939. https://doi.org/10.1523/JNEUROSCI.1398-12.2012. PMID: 22745493; PMCID: PMC3399175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yin MM, Wang W, Sun J, Liu S, Liu XL, Niu YM, Yuan HR, Yang FY, Fu L (2013) Paternal treadmill exercise enhances spatial learning and memory related to hippocampus among male offspring. Behav Brain Res 253:297–304. https://doi.org/10.1016/j.bbr.2013.07.040. Epub 2013 Jul 31. PMID: 23916757

    Article  CAS  PubMed  Google Scholar 

  36. Pitzer C, Kurpiers B, Eltokhi A (2021) Gait performance of adolescent mice assessed by the CatWalk XT depends on age, strain and sex and correlates with speed and body weight. Sci Rep 11(1):21372. https://doi.org/10.1038/s41598-021-00625-8. PMID: 34725364; PMCID: PMC8560926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eltokhi A, Kurpiers B, Pitzer C (2021) Comprehensive characterization of motor and coordination functions in three adolescent wild-type mouse strains. Sci Rep 11(1):6497. https://doi.org/10.1038/s41598-021-85858-3. PMID: 33753800; PMCID: PMC7985312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Francis DD, Zaharia MD, Shanks N, Anisman H (1995) Stress-induced disturbances in Morris water-maze performance: interstrain variability. Physiol Behav 58(1):57–65. https://doi.org/10.1016/0031-9384(95)00009-8. PMID: 7667428

    Article  CAS  PubMed  Google Scholar 

  39. Contet C, Rawlins JN, Bannerman DM (2001) Faster is not surer – a comparison of C57BL/6J and 129S2/Sv mouse strains in the watermaze. Behav Brain Res 125(1–2):261–267. https://doi.org/10.1016/s0166-4328(01)00295-9. PMID: 11682117

    Article  CAS  PubMed  Google Scholar 

  40. Owen EH, Logue SF, Rasmussen DL, Wehner JM (1997) Assessment of learning by the Morris water task and fear conditioning in inbred mouse strains and F1 hybrids: implications of genetic background for single gene mutations and quantitative trait loci analyses. Neuroscience 80(4):1087–1099. https://doi.org/10.1016/s0306-4522(97)00165-6. PMID: 9284062

    Article  CAS  PubMed  Google Scholar 

  41. Crusio WE, Schwegler H, Lipp HP (1987) Radial-maze performance and structural variation of the hippocampus in mice: a correlation with mossy fibre distribution. Brain Res 425(1):182–185. https://doi.org/10.1016/0006-8993(87)90498-7. PMID: 3427419

    Article  CAS  PubMed  Google Scholar 

  42. Prendergast BJ, Onishi KG, Zucker I (2014) Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci Biobehav Rev 40:1–5. https://doi.org/10.1016/j.neubiorev.2014.01.001. Epub 2014 Jan 20. PMID: 24456941

    Article  PubMed  Google Scholar 

  43. Roof RL, Stein DG (1999) Gender differences in Morris water maze performance depend on task parameters. Physiol Behav 68(1–2):81–86. https://doi.org/10.1016/s0031-9384(99)00162-6. PMID: 10627065

    Article  CAS  PubMed  Google Scholar 

  44. Safari S, Ahmadi N, Mohammadkhani R, Ghahremani R, Khajvand-Abedeni M, Shahidi S, Komaki A, Salehi I, Karimi SA (2021) Sex differences in spatial learning and memory and hippocampal long-term potentiation at perforant pathway-dentate gyrus (PP-DG) synapses in Wistar rats. Behav Brain Funct 17(1):9. https://doi.org/10.1186/s12993-021-00184-y. PMID: 34724971; PMCID: PMC8559395

    Article  PubMed  PubMed Central  Google Scholar 

  45. D'Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36(1):60–90. https://doi.org/10.1016/s0165-0173(01)00067-4. PMID: 11516773

    Article  CAS  PubMed  Google Scholar 

  46. Brandeis R, Brandys Y, Yehuda S (1989) The use of the Morris Water Maze in the study of memory and learning. Int J Neurosci 48(1–2):29–69. https://doi.org/10.3109/00207458909002151. PMID: 2684886

    Article  CAS  PubMed  Google Scholar 

  47. Ge JF, Qi CC, Qiao JP, Wang CW, Zhou NJ (2013) Sex differences in ICR mice in the Morris water maze task. Physiol Res 62(1):107–117. https://doi.org/10.33549/physiolres.932371. Epub 2012 Nov 22. PMID: 23173685

    Article  CAS  PubMed  Google Scholar 

  48. LaBuda CJ, Mellgren RL, Hale RL (2002) Sex differences in the acquisition of a radial maze task in the CD-1 mouse. Physiol Behav 76(2):213–217. https://doi.org/10.1016/s0031-9384(02)00713-8. PMID: 12044593

    Article  CAS  PubMed  Google Scholar 

  49. Gresack JE, Frick KM (2003) Male mice exhibit better spatial working and reference memory than females in a water-escape radial arm maze task. Brain Res 982(1):98–107. https://doi.org/10.1016/s0006-8993(03)03000-2. PMID: 12915244

    Article  CAS  PubMed  Google Scholar 

  50. Seymoure P, Dou H, Juraska J (1996) Sex differences in radial maze performance: influence of rearing environment and room cues. Psychobiology 24:33–37

    Article  Google Scholar 

  51. Baker M (2016) 1,500 scientists lift the lid on reproducibility. Nature 533(7604):452–454. https://doi.org/10.1038/533452a. PMID: 27225100

    Article  CAS  PubMed  Google Scholar 

  52. Ioannidis JP (2005) Why most published research findings are false. PLoS Med 2(8):e124. https://doi.org/10.1371/journal.pmed.0020124. Epub 2005 Aug 30. Erratum in: PLoS Med. 2022 Aug 25;19(8):e1004085. PMID: 16060722; PMCID: PMC1182327

    Article  PubMed  PubMed Central  Google Scholar 

  53. Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284(5420):1670–1672. https://doi.org/10.1126/science.284.5420.1670. PMID: 10356397

    Article  CAS  PubMed  Google Scholar 

  54. Aigner B, Heumann C (2023) Variability of clinical chemical and hematological parameters, immunological parameters, and behavioral tests in data sets of the Mouse Phenome Database. PLoS One 12 18(7):e0288209. https://doi.org/10.1371/journal.pone.0288209. PMID: 37437097; PMCID: PMC10337919

    Article  CAS  Google Scholar 

  55. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafò MR (2013) Empirical evidence for low reproducibility indicates low pre-study odds. Nat Rev Neurosci 14(12):877. https://doi.org/10.1038/nrn3475-c6. Epub 2013 Oct 23. PMID: 24149186

    Article  CAS  PubMed  Google Scholar 

  56. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafò MR (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14(5):365–376. https://doi.org/10.1038/nrn3475. Epub 2013 Apr 10. Erratum in: Nat Rev Neurosci. 2013 Jun;14(6):451. PMID: 23571845

    Article  CAS  Google Scholar 

  57. Vesterinen HM, Sena ES, Ffrench-Constant C, Williams A, Chandran S, Macleod MR (2003) Improving the translational hit of experimental treatments in multiple sclerosis. Mult Scler 16(9):1044–1055. https://doi.org/10.1177/1352458510379612. Epub 2010 Aug 4. PMID: 20685763

    Article  Google Scholar 

  58. Bebarta V, Luyten D, Heard K (2003) Emergency medicine animal research: does use of randomization and blinding affect the results? Acad Emerg Med 10(6):684–687. https://doi.org/10.1111/j.1553-2712.2003.tb00056.x. Erratum in: Acad Emerg Med. 2003 Dec;10(12):1410. PMID: 12782533.59

    Article  PubMed  Google Scholar 

  59. Karp NA, Pearl EJ, Stringer EJ, Barkus C, Ulrichsen JC, Percie du Sert N (2022) A qualitative study of the barriers to using blinding in in vivo experiments and suggestions for improvement. PLoS Biol 20(11):e3001873. https://doi.org/10.1371/journal.pbio.3001873. PMID: 36395326; PMCID: PMC9714947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191. https://doi.org/10.3758/bf03193146. PMID: 17695343

    Article  PubMed  Google Scholar 

  61. Percie du Sert N, Bamsey I, Bate ST, Berdoy M, Clark RA, Cuthill I, Fry D, Karp NA, Macleod M, Moon L, Stanford SC, Lings B (2017) The experimental design assistant. PLoS Biol 15(9):e2003779. https://doi.org/10.1371/journal.pbio.2003779. PMID: 28957312; PMCID: PMC5634641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. du Sert NP, Bamsey I, Bate ST, Berdoy M, Clark RA, Cuthill IC, Fry D, Karp NA, Macleod M, Moon L, Stanford SC, Lings B (2017) The experimental design assistant. Nat Methods 14(11):1024–1025. https://doi.org/10.1038/nmeth.4462. Epub 2017 Sep 28. PMID: 28960183; PMCID: PMC7610684

    Article  CAS  Google Scholar 

  63. Cressey D (2016) Web tool aims to reduce flaws in animal studies. Nature 531(7592):128. https://doi.org/10.1038/531128a. PMID: 26949773

    Article  PubMed  Google Scholar 

  64. Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, Crystal RG, Darnell RB, Ferrante RJ, Fillit H, Finkelstein R, Fisher M, Gendelman HE, Golub RM, Goudreau JL, Gross RA, Gubitz AK, Hesterlee SE, Howells DW, Huguenard J, Kelner K, Koroshetz W, Krainc D, Lazic SE, Levine MS, Macleod MR, McCall JM, Moxley RT 3rd, Narasimhan K, Noble LJ, Perrin S, Porter JD, Steward O, Unger E, Utz U, Silberberg SD (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490(7419):187–191. https://doi.org/10.1038/nature11556. PMID: 23060188; PMCID: PMC3511845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Glasziou P, Altman DG, Bossuyt P, Boutron I, Clarke M, Julious S, Michie S, Moher D, Wager E (2014) Reducing waste from incomplete or unusable reports of biomedical research. Lancet 383(9913):267–276. https://doi.org/10.1016/S0140-6736(13)62228-X. Epub 2014 Jan 8. PMID: 24411647

    Article  PubMed  Google Scholar 

  66. Errington TM, Mathur M, Soderberg CK, Denis A, Perfito N, Iorns E, Nosek BA (2021) Investigating the replicability of preclinical cancer biology. elife 10:e71601. https://doi.org/10.7554/eLife.71601. PMID: 34874005; PMCID: PMC8651293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412. https://doi.org/10.1371/journal.pbio.1000412. PMID: 20613859; PMCID: PMC2893951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Würbel H (2020) The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol 18(7):e3000410. https://doi.org/10.1371/journal.pbio.3000410. PMID: 32663219; PMCID: PMC7360023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Hurst V, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Würbel H (2020) Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol 18(7):e3000411. https://doi.org/10.1371/journal.pbio.3000411. PMID: 32663221; PMCID: PMC7360025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Deacon RM, Bannerman DM, Kirby BP, Croucher A, Rawlins JN (2002) Effects of cytotoxic hippocampal lesions in mice on a cognitive test battery. Behav Brain Res 133(1):57–68. https://doi.org/10.1016/s0166-4328(01)00451-x. PMID: 12048174

    Article  PubMed  Google Scholar 

  71. Reisel D, Bannerman DM, Schmitt WB, Deacon RM, Flint J, Borchardt T, Seeburg PH, Rawlins JN (2002) Spatial memory dissociations in mice lacking GluR1. Nat Neurosci 5(9):868–873. https://doi.org/10.1038/nn910. PMID: 12195431

    Article  CAS  PubMed  Google Scholar 

  72. Pritchett D, Taylor AM, Barkus C, Engle SJ, Brandon NJ, Sharp T, Foster RG, Harrison PJ, Peirson SN, Bannerman DM (2016) Searching for cognitive enhancement in the Morris water maze: better and worse performance in D-amino acid oxidase knockout (Dao(−/−)) mice. Eur J Neurosci 43(7):979–989. https://doi.org/10.1111/ejn.13192. Epub 2016 Mar 23. PMID: 26833794; PMCID: PMC4855640

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lyon L, Burnet PW, Kew JN, Corti C, Rawlins JN, Lane T, De Filippis B, Harrison PJ, Bannerman DM (2011) Fractionation of spatial memory in GRM2/3 (mGlu2/mGlu3) double knockout mice reveals a role for group II metabotropic glutamate receptors at the interface between arousal and cognition. Neuropsychopharmacology 36(13):2616–2628. https://doi.org/10.1038/npp.2011.145. Epub 2011 Aug 10. PMID: 21832989; PMCID: PMC3230485

    Article  CAS  Google Scholar 

  74. Molendijk ML, de Kloet ER (2019) Coping with the forced swim stressor: current state-of-the-art. Behav Brain Res 364:1–10. https://doi.org/10.1016/j.bbr.2019.02.005. Epub 2019 Feb 6. PMID: 30738104

    Article  PubMed  Google Scholar 

  75. Sandi C, Pinelo-Nava MT (2007) Stress and memory: behavioral effects and neurobiological mechanisms. Neural Plast 2007:78970. https://doi.org/10.1155/2007/78970. PMID: 18060012; PMCID: PMC1950232

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sandi C, Loscertales M, Guaza C (1997) Experience-dependent facilitating effect of corticosterone on spatial memory formation in the water maze. Eur J Neurosci 9(4):637–642. https://doi.org/10.1111/j.1460-9568.1997.tb01412.x. PMID: 9153570

    Article  CAS  PubMed  Google Scholar 

  77. Selden NR, Cole BJ, Everitt BJ, Robbins TW (1990) Damage to ceruleo-cortical noradrenergic projections impairs locally cued but enhances spatially cued water maze acquisition. Behav Brain Res 39(1):29–51. https://doi.org/10.1016/0166-4328(90)90119-y. PMID: 2167691

    Article  CAS  PubMed  Google Scholar 

  78. Steele RJ, Morris RG (1999) Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus 9(2):118–136. https://doi.org/10.1002/(SICI)1098-1063(1999)9:2<118::AID-HIPO4>3.0.CO;2-8. PMID: 10226773

    Article  CAS  PubMed  Google Scholar 

  79. Sanderson DJ, Bannerman DM (2012) The role of habituation in hippocampus-dependent spatial working memory tasks: evidence from GluA1 AMPA receptor subunit knockout mice. Hippocampus 22(5):981–994. https://doi.org/10.1002/hipo.20896. Epub 2010 Dec 1. PMID: 21125585; PMCID: PMC3490380

    Article  CAS  PubMed  Google Scholar 

  80. Barkus C, Bergmann C, Branco T, Carandini M, Chadderton PT, Galiñanes GL, Gilmour G, Huber D, Huxter JR, Khan AG, King AJ, Maravall M, O'Mahony T, Ragan CI, Robinson ESJ, Schaefer AT, Schultz SR, Sengpiel F, Prescott MJ (2022) Refinements to rodent head fixation and fluid/food control for neuroscience. J Neurosci Methods 381:109705. https://doi.org/10.1016/j.jneumeth.2022.109705. Epub 2022 Sep 9. PMID: 36096238

    Article  PubMed  Google Scholar 

  81. Huang YG, Flaherty SJ, Pothecary CA, Foster RG, Peirson SN, Vyazovskiy VV (2021) The relationship between fasting-induced torpor, sleep, and wakefulness in laboratory mice. Sleep 44(9):zsab093. https://doi.org/10.1093/sleep/zsab093. PMID: 33838033; PMCID: PMC8436144

    Article  Google Scholar 

  82. Tsien JZ, Huerta PT, Tonegawa S (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87(7):1327–1338. https://doi.org/10.1016/s0092-8674(00)81827-9. PMID: 8980238

    Article  CAS  PubMed  Google Scholar 

  83. Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA, Tonegawa S (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297(5579):211–218. https://doi.org/10.1126/science.1071795. Epub 2002 May 30. PMID: 12040087; PMCID: PMC2877140

    Article  Google Scholar 

  84. Nakazawa K, Sun LD, Quirk MC, Rondi-Reig L, Wilson MA, Tonegawa S (2003) Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience. Neuron 38(2):305–315. https://doi.org/10.1016/s0896-6273(03)00165-x. PMID: 12718863

    Article  CAS  PubMed  Google Scholar 

  85. McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, Lowell BB, Fanselow MS, Wilson MA, Tonegawa S (2007) Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317(5834):94–99. https://doi.org/10.1126/science.1140263. Epub 2007 Jun 7. PMID: 17556551

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Bannerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bannerman, D.M., Barkus, C., Eltokhi, A. (2024). Behavioral Analysis of NMDAR Function in Rodents: Tests of Long-Term Spatial Memory. In: Burnashev, N., Szepetowski, P. (eds) NMDA Receptors. Methods in Molecular Biology, vol 2799. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3830-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3830-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3829-3

  • Online ISBN: 978-1-0716-3830-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics