Skip to main content

Multidisciplinary Methods for Screening Toxic Proteins from Phages and Their Potential Molecular Targets

  • Protocol
  • First Online:
Phage Engineering and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2793))

Abstract

This chapter presents a comprehensive methodology for the identification, characterization, and functional analyses of potentially toxic hypothetical proteins of unknown function (toxHPUFs) in phages. The methods begin with in vivo toxicity verification of toxHPUFs in bacterial hosts, utilizing conventional drop tests and following growth curves. Computational methods for structural and functional predictions of toxHPUFs are outlined, incorporating the use of tools such as Phyre2, HHpred, and AlphaFold2. To ascertain potential targets, a comparative genomic approach is described using bioinformatics toolkits for sequence alignment and functional annotation. Moreover, steps are provided to predict protein–protein interactions and visualizing these using PyMOL. The culmination of these methods equips researchers with an effective pipeline to identify and analyze toxHPUFs and their potential targets, laying the groundwork for future experimental confirmations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Theuretzbacher U, Outterson K, Engel A, Karlen A (2020) The global preclinical antibacterial pipeline. Nat Rev Microbiol 18(5):275–285. https://doi.org/10.1038/s41579-019-0288-0

    Article  CAS  PubMed  Google Scholar 

  2. Coates AR, Halls G, Hu Y (2011) Novel classes of antibiotics or more of the same? Br J Pharmacol 163(1):184–194. https://doi.org/10.1111/j.1476-5381.2011.01250.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR (2019) Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 10:539. https://doi.org/10.3389/fmicb.2019.00539

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wan X, Hendrix H, Skurnik M, Lavigne R (2021) Phage-based target discovery and its exploitation towards novel antibacterial molecules. Curr Opin Biotechnol 68:1–7. https://doi.org/10.1016/j.copbio.2020.08.015

    Article  CAS  PubMed  Google Scholar 

  5. Roach DR, Donovan DM (2015) Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage 5(3):e1062590. https://doi.org/10.1080/21597081.2015.1062590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu J, Dehbi M, Moeck G, Arhin F, Bauda P, Bergeron D et al (2004) Antimicrobial drug discovery through bacteriophage genomics. Nat Biotechnol 22(2):185–191. https://doi.org/10.1038/nbt932

    Article  CAS  PubMed  Google Scholar 

  7. Singh S, Godavarthi S, Kumar A, Sen R (2019) A mycobacteriophage genomics approach to identify novel mycobacteriophage proteins with mycobactericidal properties. Microbiology (Reading) 165(7):722–736. https://doi.org/10.1099/mic.0.000810

    Article  CAS  PubMed  Google Scholar 

  8. Mohanraj U, Wan X, Spruit CM, Skurnik M, Pajunen MI (2019) A toxicity screening approach to identify bacteriophage-encoded anti-microbial proteins. Viruses 11(11). https://doi.org/10.3390/v11111057

  9. Spruit CM, Wicklund A, Wan X, Skurnik M, Pajunen MI (2020) Discovery of three toxic proteins of Klebsiella phage fHe-Kpn01. Viruses 12(5). https://doi.org/10.3390/v12050544

  10. Kasurinen J, Spruit CM, Wicklund A, Pajunen MI, Skurnik M (2021) Screening of bacteriophage encoded toxic proteins with a next generation sequencing-based assay. Viruses 13(5). https://doi.org/10.3390/v13050750

  11. Nyhamar E, Webber P, Liong O, Yilmaz Ă–, Pajunen M, Skurnik M and Wan X (2023) Discovery of bactericidal proteins from Staphylococcus phage Stab21 using a high-throughput screening method. Antibiotics 12(7):1213

    Google Scholar 

  12. Zabarovsky ER, Winberg G (1990) High efficiency electroporation of ligated DNA into bacteria. Nucleic Acids Res 18(19):5912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Springs Harbor Laboratory Press, Cold Springs Harbor

    Google Scholar 

  14. Coil D, Jospin G, Darling AE (2015) A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31(4):587–589. https://doi.org/10.1093/bioinformatics/btu661

    Article  CAS  PubMed  Google Scholar 

  15. Chuang LY, Cheng YH, Yang CH (2013) Specific primer design for the polymerase chain reaction. Biotechnol Lett 35(10):1541–1549

    Article  CAS  PubMed  Google Scholar 

  16. Woodall CA (2003) Electroporation of E. coli. In: E coli Plasmid vectors: methods and applications, p 55–59

    Google Scholar 

  17. Sanson B, Uzan M (1993) Dual role of the sequence-specific bacteriophage T4 endoribonuclease RegB. mRNA inactivation and mRNA destabilization. J Mol Biol 233(3):429–446

    Article  CAS  PubMed  Google Scholar 

  18. Leon-Velarde CG, Happonen L, Pajunen M, Leskinen K, Kropinski AM, Mattinen L et al (2016) Yersinia enterocolitica-specific infection by bacteriophages TG1 and varphiR1-RT is dependent on temperature-regulated expression of the phage host receptor OmpF. Appl Environ Microbiol 82(17):5340–5353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Young JW, Locke JC, Altinok A, Rosenfeld N, Bacarian T, Swain PS et al (2011) Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nat Protoc 7(1):80–88

    Article  PubMed  PubMed Central  Google Scholar 

  20. Azzarito V, Long K, Murphy NS, Wilson AJ (2013) Inhibition of alpha-helix-mediated protein-protein interactions using designed molecules. Nat Chem 5(3):161–173. https://doi.org/10.1038/nchem.1568

    Article  CAS  PubMed  Google Scholar 

  21. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zimmermann L, Stephens A, Nam SZ, Rau D, Kubler J, Lozajic M et al (2018) A completely Reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430(15):2237–2243

    Article  CAS  PubMed  Google Scholar 

  23. Castro-Alvarez A, Costa AM, Vilarrasa J (2017) The performance of several docking programs at reproducing protein–macrolide-like crystal structures. Molecules 22(1):136

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wan X, Takala TM, Huynh VA, Ahonen SL, Paulin L, Bjorkroth J et al (2023) Comparative genomics of 40 Weissella paramesenteroides strains. Front Microbiol 14:1128028

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kuroda D, Gray JJ (2016) Shape complementarity and hydrogen bond preferences in protein-protein interfaces: implications for antibody modeling and protein-protein docking. Bioinformatics 32(16):2451–2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karimova G, Gauliard E, Davi M, Ouellette SP, Ladant D (2017) Protein-protein interaction: bacterial two-hybrid. Methods Mol Biol 1615:159–176

    Article  PubMed  Google Scholar 

  27. Louche A, Salcedo SP, Bigot S (2017) Protein–protein interactions: pull-down assays. In: Bacterial Protein secretion systems: methods and protocols, p 247–255

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank professors Abram Aertsen and Rob Lavigne from KU Leuven, Belgium, for the time-lapse microscopy as shown in Fig. 2. This research was funded by the Academy of Finland (grant number 288701) and by Jane and Aatos Erkko Foundation to M.S. (Decision 2016). X.W. received a personal grant from the Jane and Aatos Erkko Foundation (grant number 200050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wan, X., Skurnik, M. (2024). Multidisciplinary Methods for Screening Toxic Proteins from Phages and Their Potential Molecular Targets. In: Peng, H., Liu, J., Chen, I.A. (eds) Phage Engineering and Analysis. Methods in Molecular Biology, vol 2793. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3798-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3798-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3797-5

  • Online ISBN: 978-1-0716-3798-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics