Skip to main content

Quantitative Analysis of Epigenetic Modifications in Fagopyrum Nuclei with Confocal Microscope, ImageJ, and R Studio

  • Protocol
  • First Online:
Buckwheat

Abstract

Epigenetic programming plays a vital role in regulating pluripotency genes, which become activated or inactivated during the processes of dedifferentiation and differentiation during an organism’s development. The analysis of epigenetic modifications has become possible through the technique of immunostaining, where specific antibodies allow the identification of a single target protein. This chapter describes a detailed protocol for the analysis of the epigenetic modifications with the use of confocal microscopy, subsequent image, and statistical analysis on the example of Fagopyrum calli with the use of nine antibodies raised against histone H3 and H4 methylation and acetylation on several lysines as well as DNA methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Braszewska-Zalewska A, Bernas T, Maluszynska J (2010) Epigenetic chromatin modifications in Brassica genomes. Genome 53:203

    Article  CAS  PubMed  Google Scholar 

  2. Pawley JB (2006) Handbook of biological confocal microscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  3. Wilson T (2011) Resolution and optical sectioning in the confocal microscope. J Microsc 244:113

    Article  CAS  PubMed  Google Scholar 

  4. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with imageJ. Biophoton Int 11:36–42

    Google Scholar 

  5. Collins TJ (2007) ImageJ for microscopy. BioTechniques 43:S25

    Article  Google Scholar 

  6. Bourne R (2010) ImageJ. In: Fundamentals of digital imaging in medicine. Springer, London

    Chapter  Google Scholar 

  7. Bankhead P (2014) Analyzing fluorescence microscopy images with ImageJ. ImageJ

    Google Scholar 

  8. Ferreira T, Rasband W (2012) ImageJ user guide user guide ImageJ. ImageJ User Guide 1:46r

    Google Scholar 

  9. Hartig SM (2013) Basic image analysis and manipulation in ImageJ. In: Current protocols in molecular biology

    Google Scholar 

  10. Schroeder AB, Dobson ETA, Rueden CT, Tomancak P, Jug F, Eliceiri KW (2021) The ImageJ ecosystem: open-source software for image visualization, processing, and analysis. Protein Sci 30:234

    Article  CAS  PubMed  Google Scholar 

  11. Martin G (2021) R Studio. In: An introduction to programming with R

    Google Scholar 

  12. Mendiburu F (2021) Statistical procedures for agricultural research. Wiley, New York

    Google Scholar 

  13. Kassambara A. (2022) Visualization of a correlation matrix using “ggplot2.” Package ‘ggcorrplot’

    Google Scholar 

  14. Del TI, Dickson K, Hakes AS, Newman SL (2022) Early undergraduate biostatistics & data science introduction using R, R Studio & the Tidyverse American Biology Teacher. Am Biol Teach 84:124–129

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Centre Poland, project OPUS19 grant number 2020/37/B/NZ9/01499.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Braszewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tomasiak, A., Berg, L.S., Sala, K., Braszewska, A. (2024). Quantitative Analysis of Epigenetic Modifications in Fagopyrum Nuclei with Confocal Microscope, ImageJ, and R Studio. In: Betekhtin, A., Pinski, A. (eds) Buckwheat. Methods in Molecular Biology, vol 2791. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3794-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3794-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3793-7

  • Online ISBN: 978-1-0716-3794-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics