Skip to main content

Root Hair Imaging Using Confocal Microscopy

  • Protocol
  • First Online:
Plant Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2787))

  • 157 Accesses

Abstract

Plant genetics plays a key role in determining root hair initiation and development. A complex network of genetic interactions therefore closely monitors and influences root hair phenotype and morphology. The significance of these genes can be studied by employing, for instance, loss-of-function mutants, overexpression plant lines, and fluorescently labeled constructs. Confocal laser scanning microscopy is a great tool to visually observe and document these morphological features. This chapter elaborates the techniques involved in handling of microscopic setup to acquire images displaying root hair distribution along the fully elongated zone of Arabidopsis thaliana roots. Additionally, we illustrate an approach to visualize early fate determination of epidermal cells in the root apical meristem, by describing a method for imaging YFP tagged transgenic plant lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodge A, Berta G, Doussan C et al (2009) Plant root growth, architecture and function. Plant Soil 321:153–187. https://doi.org/10.1007/s11104-009-9929-9

    Article  CAS  Google Scholar 

  2. Vacheron J, Desbrosses G, Bouffaud M-L et al (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  3. Benfey PN, Bennett M, Schiefelbein J (2010) Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research. Plant J 61:992–1000. https://doi.org/10.1111/j.1365-313X.2010.04129.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fukuda H, Ohashi-Ito K (2019) Chapter six—vascular tissue development in plants. In: Grossniklaus U (ed) Current topics in developmental biology. Academic, pp 141–160

    Google Scholar 

  5. Khan MA, Gemenet DC, Villordon A (2016) Root system architecture and abiotic stress tolerance: current knowledge in root and tuber crops. Front Plant Sci 7:1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bengough AG, Loades K, McKenzie BM (2016) Root hairs aid soil penetration by anchoring the root surface to pore walls. J Exp Bot 67:1071–1078. https://doi.org/10.1093/jxb/erv560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kohli PS, Maurya K, Thakur JK et al (2022) Significance of root hairs in developing stress-resilient plants for sustainable crop production. Plant Cell Environ 45:677–694. https://doi.org/10.1111/pce.14237

    Article  CAS  PubMed  Google Scholar 

  8. Marin M, Feeney DS, Brown LK et al (2021) Significance of root hairs for plant performance under contrasting field conditions and water deficit. Ann Bot 128:1–16. https://doi.org/10.1093/aob/mcaa181

    Article  CAS  PubMed  Google Scholar 

  9. Chang X, Kingsley KL, White JF (2021) Chemical interactions at the interface of plant root hair cells and intracellular bacteria. Microorganisms 9:1041. https://doi.org/10.3390/microorganisms9051041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robertson-Albertyn S, Alegria Terrazas R, Balbirnie K et al (2017) Root hair mutations displace the barley rhizosphere microbiota. Front Plant Sci 8:1094

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dolan L, Costa S (2001) Evolution and genetics of root hair stripes in the root epidermis. J Exp Bot 52:413–417. https://doi.org/10.1093/jexbot/52.suppl_1.413

    Article  CAS  PubMed  Google Scholar 

  12. Dolan L, Duckett CM, Grierson C et al (1994) Clonal relationships and cell patterning in the root epidermis of Arabidopsis. Development 120:2465–2474

    Article  CAS  Google Scholar 

  13. Löfke C, Dünser K, Kleine-Vehn J (2013) Epidermal patterning genes impose non-cell autonomous cell size determination and have additional roles in root meristem size control. J Integr Plant Biol 55:864–875. https://doi.org/10.1111/jipb.12097

    Article  CAS  PubMed  Google Scholar 

  14. Löfke C, Scheuring D, Dünser K et al (2015) Tricho- and atrichoblast cell files show distinct PIN2 auxin efflux carrier exploitations and are jointly required for defined auxin-dependent root organ growth. J Exp Bot 66:5103–5112. https://doi.org/10.1093/jxb/erv282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Janes G, von Wangenheim D, Cowling S et al (2018) Cellular patterning of Arabidopsis roots under low phosphate conditions. Front Plant Sci 9:735. https://doi.org/10.3389/fpls.2018.00735

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rossini L, Muehlbauer GJ, Okagaki R et al (2018) Genetics of whole plant morphology and architecture. In: Stein N, Muehlbauer GJ (eds) The barley genome. Springer, Cham, pp 209–231

    Chapter  Google Scholar 

  17. Staskawicz BJ (2001) Genetics of plant-pathogen interactions specifying plant disease resistance. Plant Physiol 125:73–76. https://doi.org/10.1104/pp.125.1.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Balcerowicz D, Schoenaers S, Vissenberg K (2015) Cell fate determination and the switch from diffuse growth to planar polarity in Arabidopsis root epidermal cells. Front Plant Sci 6:1163. https://doi.org/10.3389/fpls.2015.01163

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jung J, McCouch S (2013) Getting to the roots of it: genetic and hormonal control of root architecture. Front Plant Sci 4:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Salazar-Henao JE, Vélez-Bermúdez IC, Schmidt W (2016) The regulation and plasticity of root hair patterning and morphogenesis. Development 143:1848–1858. https://doi.org/10.1242/dev.132845

    Article  CAS  PubMed  Google Scholar 

  21. Lee MM, Schiefelbein J (1999) WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99:473–483. https://doi.org/10.1016/s0092-8674(00)81536-6

    Article  CAS  PubMed  Google Scholar 

  22. Masucci JD, Rerie WG, Foreman DR et al (1996) The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development 122:1253–1260

    Article  CAS  PubMed  Google Scholar 

  23. Grierson C, Schiefelbein J (2002) Root hairs. Arabidopsis Book/American Society of Plant Biologists 1:e0060. https://doi.org/10.1199/tab.0060

    Article  Google Scholar 

  24. Kimura Y, Ushiwatari T, Suyama A et al (2019) Contribution of root hair development to sulfate uptake in Arabidopsis. Plan Theory 8:106. https://doi.org/10.3390/plants8040106

    Article  CAS  Google Scholar 

  25. Mutanwad KV, Zangl I, Lucyshyn D (2020) The Arabidopsis O-fucosyltransferase SPINDLY regulates root hair patterning independently of gibberellin signaling. Development 147:dev192039. https://doi.org/10.1242/dev.192039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feng Y, Xu P, Li B et al (2017) Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis. PNAS 114:13834–13839. https://doi.org/10.1073/pnas.1711723115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Long Y, Schiefelbein J (2020) Novel TTG1 mutants modify root-hair pattern formation in Arabidopsis. Front Plant Sci 11:383

    Article  PubMed  PubMed Central  Google Scholar 

  28. Masucci JD, Schiefelbein JW (1994) The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin- and ethylene-associated process. Plant Physiol 106:1335–1346. https://doi.org/10.1104/pp.106.4.1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Menand B, Yi K, Jouannic S et al (2007) An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316:1477–1480. https://doi.org/10.1126/science.1142618

    Article  CAS  PubMed  Google Scholar 

  30. Wada T, Kurata T, Tominaga R et al (2002) Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development 129:5409–5419. https://doi.org/10.1242/dev.00111

    Article  CAS  PubMed  Google Scholar 

  31. Aufrecht JA, Ryan JM, Hasim S et al (2017) Imaging the root hair morphology of Arabidopsis seedlings in a two-layer microfluidic platform. J Vis Exp 126:55971. https://doi.org/10.3791/55971

    Article  CAS  Google Scholar 

  32. von Wangenheim D, Hauschild R, Fendrych M et al (2017) Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife 6:e26792. https://doi.org/10.7554/eLife.26792

    Article  Google Scholar 

  33. Marquès-Bueno M del M, Morao AK, Cayrel A et al (2016) A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis. Plant J 85:320–333. https://doi.org/10.1111/tpj.13099

    Article  CAS  Google Scholar 

  34. Bureau C, Lanau N, Ingouff M et al (2018) A protocol combining multiphoton microscopy and propidium iodide for deep 3D root meristem imaging in rice: application for the screening and identification of tissue-specific enhancer trap lines. Plant Methods 14:96. https://doi.org/10.1186/s13007-018-0364-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crowley LC, Scott AP, Marfell BJ et al (2016) Measuring cell death by propidium iodide uptake and flow cytometry. Cold Spring Harb Protoc 2016:pdb.prot087163. https://doi.org/10.1101/pdb.prot087163

    Article  Google Scholar 

  36. Helariutta Y, Fukaki H, Wysocka-Diller J et al (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567. https://doi.org/10.1016/S0092-8674(00)80865-X

    Article  CAS  PubMed  Google Scholar 

  37. Musielak TJ, Schenkel L, Kolb M et al (2015) A simple and versatile cell wall staining protocol to study plant reproduction. Plant Reprod 28:161–169. https://doi.org/10.1007/s00497-015-0267-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Truernit E, Haseloff J (2008) A simple way to identify non-viable cells within living plant tissue using confocal microscopy. Plant Methods 4:15. https://doi.org/10.1186/1746-4811-4-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Crowley LC, Marfell BJ, Scott AP, Waterhouse NJ (2016) Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb Protoc 2016:pdb.prot087288. https://doi.org/10.1101/pdb.prot087288

    Article  Google Scholar 

  40. Berg RH, Beachy RN (2008) Fluorescent protein applications in plants. Methods Cell Biol 85:153–177. https://doi.org/10.1016/S0091-679X(08)85008-X

    Article  CAS  PubMed  Google Scholar 

  41. Feraru E, Feraru MI, Barbez E et al (2019) PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proc Natl Acad Sci U S A 116:3893–3898. https://doi.org/10.1073/pnas.1814015116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marhavý P, Bielach A, Abas L et al (2011) Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell 21:796–804. https://doi.org/10.1016/j.devcel.2011.08.014

    Article  CAS  PubMed  Google Scholar 

  43. Song JH, Kwak S-H, Nam KH et al (2019) QUIRKY regulates root epidermal cell patterning through stabilizing SCRAMBLED to control CAPRICE movement in Arabidopsis. Nat Commun 10:1744. https://doi.org/10.1038/s41467-019-09715-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hassan H, Scheres B, Blilou I (2010) JACKDAW controls epidermal patterning in the Arabidopsis root meristem through a non-cell-autonomous mechanism. Development 137:1523–1529. https://doi.org/10.1242/dev.048777

    Article  CAS  PubMed  Google Scholar 

  45. Kwak S-H, Schiefelbein J (2008) A feedback mechanism controlling SCRAMBLED receptor accumulation and cell-type pattern in Arabidopsis. Curr Biol 18:1949–1954. https://doi.org/10.1016/j.cub.2008.10.064

    Article  PubMed  Google Scholar 

  46. Kwak S-H, Shen R, Schiefelbein J (2005) Positional signaling mediated by a receptor-like kinase in Arabidopsis. Science (New York, NY) 307:1111–1113. https://doi.org/10.1126/science.1105373

    Article  CAS  Google Scholar 

  47. Savage NS, Walker T, Wieckowski Y et al (2008) A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis. PLoS Biol 6:e235. https://doi.org/10.1371/journal.pbio.0060235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hossain Z, Amyot L, McGarvey B et al (2012) The translation elongation factor eEF-1Bβ1 is involved in cell wall biosynthesis and plant development in Arabidopsis thaliana. PLoS One 7:e30425. https://doi.org/10.1371/journal.pone.0030425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grierson C, Nielsen E, Ketelaarc T, Schiefelbein J (2014) Root hairs. Arabidopsis Book 12:e0172. https://doi.org/10.1199/tab.0172

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Austrian Science Fund (FWF, V658 and P35036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Lucyshyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mutanwad, K.V., Debreczeny, M., Lucyshyn, D. (2024). Root Hair Imaging Using Confocal Microscopy. In: Maghuly, F. (eds) Plant Functional Genomics. Methods in Molecular Biology, vol 2787. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3778-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3778-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3777-7

  • Online ISBN: 978-1-0716-3778-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics