Skip to main content

CRISPR-Based Split Luciferase as a Biosensor for Unique DNA Sequences In Situ

  • Protocol
  • First Online:
Fluorescence In Situ Hybridization (FISH)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2784))

  • 263 Accesses

Abstract

To date, CRISPR-based DNA targeting approaches have typically used fusion proteins between full fluorescent reporters and catalytically inactive Cas9 (dCas9) for imaging rather than detection of endogenous genomic DNA sequences. A promising alternative strategy for DNA targeting is the direct biosensing of user-defined sequences at single copy with single-cell resolution. Our recently described DNA biosensing approach using a dual fusion protein biosensor comprised of two independently optimized fragments of NanoLuc luciferase (NLuc) directionally fused to dCas9 paired with user-defined single-guide RNAs (sgRNAs) could allow users to sensitively detect unique copies of a target sequence in individual living cells using common laboratory equipment such as a microscope or a luminescence-equipped microplate reader. Here we describe a protocol for using such a DNA biosensor noninvasively in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen B, Gilbert LA, Cimini BA et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ye H, Rong Z, Lin Y (2017) Live cell imaging of genomic loci using dCas9-SunTag system and a bright fluorescent protein. Protein Cell 8:853–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen B, Zou W, Xu H et al (2018) Efficient labeling and imaging of protein-coding genes in living cells using CRISPR-Tag. Nat Commun 9:5065

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dreissig S, Schiml S, Schindele P et al (2017) Live-cell CRISPR imaging in plants reveals dynamic telomere movements. Plant J 91:565–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu X, Mao S, Ying Y et al (2019) Progress and challenges for live-cell imaging of genomic loci using CRISPR-based platforms. Genomics Proteomics Bioinformatics 17:119–128

    Article  PubMed  PubMed Central  Google Scholar 

  6. Deng W, Shi X, Tjian R et al (2015) CASFISH: CRISPR/Cas9mediated in situ labeling of genomic loci in fixed cells. Proc Natl Acad Sci U S A 112:11870–11875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang D, Chan S, Sugerman K et al (2018) CRISPR-bind: a simple, custom CRISPR/dCas9-mediated labeling of genomic DNA for mapping in nanochannel arrays. bioRxiv 371518v1

    Google Scholar 

  8. Ma H, Naseri A, Reyes-Gutierrez P et al (2015) Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci U S A 112:3002–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heath NG, O'Geen H, Halmai NB et al (2022) Imaging unique DNA sequences in individual cells using a CRISPR-Cas9-based, split luciferase biosensor. Front Genome Ed 4:867390

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bernas T, Robinson JP, Asem EK et al (2005) Loss of image quality in photobleaching during microscopic imaging of fluorescent probes bound to chromatin. J Biomed Opt 10:064015

    Article  PubMed  Google Scholar 

  11. Tung JK, Berglund K, Gutekunst C et al (2016) Bioluminescence imaging in live cells and animals. Neurophotonics 3:025001

    Article  PubMed  PubMed Central  Google Scholar 

  12. Choy G, O'Connor S, Diehn FE et al (2003) Comparison of noninvasive fluorescent and bioluminescent small animal optical imaging. BioTechniques 35(5):1022–1026. 1028-30

    Article  CAS  PubMed  Google Scholar 

  13. Hall MP, Unch J, Binkowski BF et al (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7:1848–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. England CG, Ehlerding EB, Cai W (2016) NanoLuc: a small luciferase is brightening up the field of bioluminescence. Bioconjug Chem 27:1175–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boutorine AS, Novopashina DS, Krasheninina OA et al (2013) Fluorescent probes for nucleic acid visualization in fixed and live cells. Molecules 18:15357–15397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dahan L, Huang L, Kedmi R et al (2013) SNP detection in mRNA in living cells using allele specific FRET probes. PLoS One 8:e72389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Didenko VV (2001) DNA probes using fluorescence resonance energy transfer (FRET): designs and applications. BioTechniques 31:1106–16, 1118, 1120–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu X, Mao S, Yang Y et al (2018) A CRISPR/molecular beacon hybrid system for live-cell genomic imaging. Nucleic Acids Res 46(13):e80

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mao S, Ying Y, Wu X et al (2019) CRISPR/dual-FRET molecular beacon for sensitive live-cell imaging of non-repetitive genomic loci. Nucleic Acids Res 47(20):e131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stains CI, Porter JR, Ooi AT et al (2005) DNA sequence-enabled reassembly of the green fluorescent protein. J Am Chem Soc 127:10782–10783

    Article  CAS  PubMed  Google Scholar 

  21. Ooi AT, Stains CI, Ghosh I et al (2006) Sequence-enabled reassembly of betalactamase (SEER-LAC): a sensitive method for the detection of double-stranded DNA. Biochemistry 45:3620–3625

    Article  CAS  PubMed  Google Scholar 

  22. Ghosh I, Stains CI, Ooi AT et al (2006) Direct detection of double-stranded DNA: molecular methods and applications for DNA diagnostics. Mol BioSyst 2:551–560

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Qian L, Wei W et al (2017) Paired design of dCas9 as a systematic platform for the detection of featured nucleic acid sequences in pathogenic strains. ACS Synth Biol 6:211–216

    Article  CAS  PubMed  Google Scholar 

  24. Zhou L, Zhang L, Yang L et al (2021) Tandem reassembly of split luciferase-DNA chimeras for bioluminescent detection of attomolar circulating microRNAs using a smartphone. Biosens Bioelectron 173:112824

    Article  CAS  PubMed  Google Scholar 

  25. Hu H, Zhang H, Wang S et al (2017) Live visualization of genomic loci with BiFC-TALE. Sci Rep 7:40192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu H, Yang X, Tang C (2019) Visualization of genomic loci in living cells with BiFC-TALE. Curr Protoc Cell Biol 82:e78

    Article  PubMed  Google Scholar 

  27. Dixon AS, Schwinn MK, Hall MP et al (2016) NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem Biol 11:400–408

    Article  CAS  PubMed  Google Scholar 

  28. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arganda-Carreras I, Kaynig V, Rueden C et al (2017) Trainable weka segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33:2424–2426

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Segal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Heath, N.G., Segal, D.J. (2024). CRISPR-Based Split Luciferase as a Biosensor for Unique DNA Sequences In Situ. In: Haimovich, G. (eds) Fluorescence In Situ Hybridization (FISH). Methods in Molecular Biology, vol 2784. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3766-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3766-1_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3765-4

  • Online ISBN: 978-1-0716-3766-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics