Skip to main content

Culture of Human Fetal Membranes in a Two Independent Compartment Model: An Ex Vivo Approach

  • Protocol
  • First Online:
Maternal Placental Interface

Abstract

During pregnancy, the fetal membranes composed of the amnion and chorodecidua constitute a selective barrier separating two distinct environments, maternal and fetal. These tissues have the function of delimiting the amniotic cavity. Their histological complexity gives them physical, mechanical, and immunological properties to protect the fetus. Although the study of the amnion, chorion, and decidua separately provides knowledge about the functions of the fetal membranes, the protocol we describe in this chapter has the advantage of maintaining the biological and functional complexity of these tissues. In addition, this experimental model allows the researcher to recreate various pathological scenarios because this model allows for differential stimulation of the amnion or choriodecidua.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bryant-Greenwood GD (1998) The extracellular matrix of the human fetal membranes: structure and function. Placenta 19:1–11. https://doi.org/10.1016/s0143-4004(98)90092-3

    Article  CAS  PubMed  Google Scholar 

  2. Martin L, Richardson L, Menon R (2018) Characteristics, properties, and functionality of fetal membranes: an overlooked area in the field of parturition. Elsevier Inc.

    Google Scholar 

  3. Ducza E, Csányi A, Gáspár R (2017) Aquaporins during pregnancy: their function and significance. Int J Mol Sci 18. https://doi.org/10.3390/IJMS18122593

  4. Monsivais LA, Sheller-Miller S, Russell W et al (2020) Fetal membrane extracellular vesicle profiling reveals distinct pathways induced by infection and inflammation in vitro. Am J Reprod Immunol 84. https://doi.org/10.1111/AJI.13282

  5. Tong M, Hanna SE, Abrahams VM (2021) Polymicrobial stimulation of human fetal membranes induce neutrophil activation and neutrophil extracellular trap release. J Reprod Immunol 145. https://doi.org/10.1016/J.JRI.2021.103306

  6. Cross SN, Potter JA, Aldo P et al (2017) Viral infection sensitizes human fetal membranes to bacterial LPS by MERTK inhibition and Inflammasome activation. J Immunol 199:2885. https://doi.org/10.4049/JIMMUNOL.1700870

    Article  CAS  PubMed  Google Scholar 

  7. Aaltonen R, Heikkinen J, Vahlberg T et al (2007) Local inflammatory response in choriodecidua induced by Ureaplasma urealyticum. BJOG 114:1432–1435. https://doi.org/10.1111/J.1471-0528.2007.01410.X

    Article  CAS  PubMed  Google Scholar 

  8. Miller MF, Loch-Caruso R (2010) Comparison of LPS-stimulated release of cytokines in punch versus transwell tissue culture systems of human gestational membranes. Reprod Biol Endocrinol 8:121. https://doi.org/10.1186/1477-7827-8-121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Flores-Espinosa P, Pineda-Torres M, Vega-Sánchez R et al (2014) Progesterone elicits an inhibitory effect upon LPS-induced innate immune response in pre-labor human amniotic epithelium. Am J Reprod Immunol 71. https://doi.org/10.1111/aji.12163

  10. Uchide N, Suzuki A, Ohyama K et al (2006) Secretion of bioactive interleukin-6 and tumor necrosis factor-alpha proteins from primary cultured human fetal membrane chorion cells infected with influenza virus. Placenta 27:678–690. https://doi.org/10.1016/J.PLACENTA.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  11. Uchide N, Tadera C, Sarai H et al (2006) Characterization of monocyte differentiation-inducing (MDI) factors derived from human fetal membrane chorion cells undergoing apoptosis after influenza virus infection. Int J Biochem Cell Biol 38:1926–1938. https://doi.org/10.1016/j.biocel.2006.05.014

    Article  CAS  PubMed  Google Scholar 

  12. de Castro SM, Richardson LS, Kechichian T et al (2020) Inflammation, but not infection, induces EMT in human amnion epithelial cells. Reproduction 160:627–638. https://doi.org/10.1530/REP-20-0283

    Article  Google Scholar 

  13. Hoang M, Potter JA, Gysler SM et al (2014) Human fetal membranes generate distinct cytokine profiles in response to bacterial Toll-like receptor and nod-like receptor agonists. Biol Reprod 90. https://doi.org/10.1095/BIOLREPROD.113.115428

  14. Lavergne M, Belville C, Choltus H et al (2020) Human amnion epithelial cells (AECs) respond to the FSL-1 Lipopeptide by engaging the NLRP7 Inflammasome. Front Immunol 11. https://doi.org/10.3389/FIMMU.2020.01645

  15. Richardson L, Jeong S, Kim S et al (2019) Amnion membrane organ-on-chip: an innovative approach to study cellular interactions. FASEB J 33:8945–8960. https://doi.org/10.1096/FJ.201900020RR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Richardson LS, Kim S, Han A, Menon R (2020) Modeling ascending infection with a feto-maternal interface organ-on-chip. Lab Chip 20:4486–4501. https://doi.org/10.1039/D0LC00875C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zaga V, Estrada-Gutierrez G, Beltran-Montoya J et al (2004) Secretions of interleukin-1β and tumor necrosis factor α by whole fetal membranes depend on initial interactions of amnion or Choriodecidua with lipopolysaccharides or Group B Streptococci1. Biol Reprod 71:1296–1302. https://doi.org/10.1095/biolreprod.104.028621

    Article  CAS  PubMed  Google Scholar 

  18. Zaga-Clavellina V, López GG, Estrada-Gutierrez G et al (2006) Incubation of human chorioamniotic membranes with Candida albicans induces differential synthesis and secretion of interleukin-1β, interleukin-6, prostaglandin E 2, and 92 kDa type IV collagenase. Mycoses 49:6–13. https://doi.org/10.1111/j.1439-0507.2005.01171.x

    Article  CAS  PubMed  Google Scholar 

  19. Zaga-Clavellina V, Martha RVM, Flores-Espinosa P (2012) In vitro secretion profile of pro-inflammatory cytokines IL-1β, TNF-α, IL-6, and of Human Beta-Defensins (HBD)-1, HBD-2, and HBD-3 from human chorioamniotic membranes after selective stimulation with gardnerella vaginalis. Am J Reprod Immunol 67:34–43. https://doi.org/10.1111/j.1600-0897.2011.01054.x

    Article  CAS  PubMed  Google Scholar 

  20. Zaga-Clavellina V, Garcia-Lopez G, Flores-Pliego A et al (2011) In vitro secretion and activity profiles of matrix metalloproteinases, MMP-9 and MMP-2, in human term extra-placental membranes after exposure to Escherichia coli. Reprod Biol Endocrinol 9. https://doi.org/10.1186/1477-7827-9-13

  21. Garcia-Lopez G, Flores-Espinosa P, Zaga-Clavellina V (2010) Tissue-specific human beta-defensins (HBD)1, HBD2, and HBD3 secretion from human extra-placental membranes stimulated with Escherichia coli. Reprod Biol Endocrinol 8. https://doi.org/10.1186/1477-7827-8-146

  22. Zaga-Clavellina V, Garcia-Lopez G, Flores-Espinosa P (2012) Evidence of in vitro differential secretion of human beta-defensins-1, -2, and -3 after selective exposure to Streptococcus agalactiae in human fetal membranes. J Matern Neonatal Med 25:358–363. https://doi.org/10.3109/14767058.2011.578695

    Article  CAS  Google Scholar 

  23. Olmos-Ortiz A, Hernández-Pérez M, Flores-Espinosa P et al (2022) Compartmentalized innate immune response of human fetal membranes against Escherichia coli Choriodecidual infection. Int J Mol Sci 23. https://doi.org/10.3390/IJMS23062994

  24. Núñez-Sánchez E, Flores-Espinosa MDP, Mancilla-Herrera I et al (2021) Prolactin modifies the in vitro LPS-induced chemotactic capabilities in human fetal membranes at the term of gestation. Am J Reprod Immunol. https://doi.org/10.1111/aji.13413

  25. Flores-Espinosa P, Olmos-Ortíz A, Granados-Cepeda M et al (2021) Prolactin protects the structural integrity of human fetal membranes by downregulating inflammation-induced secretion of matrix metalloproteinases. Immunol Investig. https://doi.org/10.1080/08820139.2021.1936012

  26. Olmos-Ortiz A, Déciga-García M, Preciado-Martínez E et al (2019) Prolactin decreases LPS-induced inflammatory cytokines by inhibiting TLR-4/NFκB signaling in the human placenta. Mol Hum Reprod 25:660–667. https://doi.org/10.1093/molehr/gaz038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Flores-Espinosa P, Preciado-Martínez E, Mejía-Salvador A et al (2017) Selective immuno-modulatory effect of prolactin upon pro-inflammatory response in human fetal membranes. J Reprod Immunol 123:58–64. https://doi.org/10.1016/j.jri.2017.09.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the microbiology and pathology department of the Instituto Nacional de Perinatología for their support in obtaining and isolating the bacterial strains, as well as Dr. Pilar Velazquez of Hospital Ángeles México for her support in getting biological samples for the standardization of the protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica Zaga-Clavellina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Flores-Espinosa, P., Mancilla-Herrera, I., Olmos-Ortiz, A., Díaz, L., Zaga-Clavellina, V. (2024). Culture of Human Fetal Membranes in a Two Independent Compartment Model: An Ex Vivo Approach. In: Zaga-Clavellina, V. (eds) Maternal Placental Interface. Methods in Molecular Biology, vol 2781. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3746-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3746-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3745-6

  • Online ISBN: 978-1-0716-3746-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics