Skip to main content

Diversification of Plastid Structure and Function in Land Plants

  • Protocol
  • First Online:
Plastids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2776))

  • 314 Accesses

Abstract

Plastids represent a largely diverse group of organelles in plant and algal cells that have several common features but also a broad spectrum of morphological, ultrastructural, biochemical, and physiological differences. Plastids and their structural and metabolic diversity significantly contribute to the functionality and developmental flexibility of the plant body throughout its lifetime. In addition to the multiple roles of given plastid types, this diversity is accomplished in some cases by interconversions between different plastids as a consequence of developmental and environmental signals that regulate plastid differentiation and specialization. In addition to basic plastid structural features, the most important plastid types, the newly characterized peculiar plastids, and future perspectives in plastid biology are also provided in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gunning B, Koenig F, Govindjee PM (2007) A dedication to pioneers of research on chloroplast structure. In: Wise RR, Hoober K (eds.) Advances in photosynthesis and respiration, The structure and function of plastids, vol 23. Springer, Dordrecht, pp xxiii–xxxi

    Google Scholar 

  2. Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304(5668):253–257.

    Google Scholar 

  3. Jensen PE, Leister D (2014) Chloroplast evolution, structure and functions. F1000Prime Rep 6(40):10.12703

    Google Scholar 

  4. Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5(4):174–182

    CAS  PubMed  Google Scholar 

  5. Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607.

    Google Scholar 

  6. McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37(6):951–959

    Google Scholar 

  7. Ponce-Toledo RI, López-García P, Moreira D (2019) Horizontal and endosymbiotic gene transfer in early plastid evolution. New Phytol 224(2):618–624

    PubMed  PubMed Central  Google Scholar 

  8. Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5(2):123–135.

    Google Scholar 

  9. Syvanen M, Kado CI (2001) Horizontal gene transfer. Academic, San Diego

    Google Scholar 

  10. Keeling PJ, Archibald JM (2008) Organelle evolution: what’s in a name? Curr Biol 18(8):R345–R347

    CAS  PubMed  Google Scholar 

  11. Mower JP, Vickrey TL (2018) Structural diversity among plastid genomes of land plants. Adv Bot Res 85:263–292

    CAS  Google Scholar 

  12. Xu S, Teng K, Zhang H, Gao K, Wu J, Duan L, Yue Y, Fan X (2023) Chloroplast genomes of four Carex species: long repetitive sequences trigger dramatic changes in chloroplast genome structure. Frontiers in Plant Sci 14:1100876

    Google Scholar 

  13. Tonti-Filippini J, Nevill PG, Dixon K, Small I (2017) What can we do with 1000 plastid genomes? Plant J 90(4):808–818

    CAS  PubMed  Google Scholar 

  14. Allen JF, Raven JA (1996) Free-radical-induced mutation vs redox regulation: costs and benefits of genes in organelles. J Mol Evol 42(5):482–492

    CAS  PubMed  Google Scholar 

  15. Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol 118(1):9–17

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29(3):380–395

    CAS  PubMed  Google Scholar 

  17. Allen JF (2003) The function of genomes in bioenergetic organelles. Philos Trans R Soc Lond B Biol Sci 358(1429):19–38

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hagemann R (2010) The foundation of extranuclear inheritance: plastid and mitochondrial genetics. Mol Gen Genomics 283(3):199–209

    CAS  Google Scholar 

  19. Osteryoung KW, Nunnari J (2003) The division of endosymbiotic organelles. Science 302(5651):1698–1704

    CAS  PubMed  Google Scholar 

  20. Leech R, Pyke K (1988) Chloroplast division in higher plants with particular reference to wheat. In: SA Boffey, D Lloyd (eds.) Division and segregation of organelles, Cambridge University Press, Cambridge, pp. 31-62

    Google Scholar 

  21. Osteryoung KW, Pyke KA (2014) Division and dynamic morphology of plastids. Annual Review Plant Biology 65:443–472.

    Google Scholar 

  22. Sundqvist C, Björn L, Virgin H (1980) Factors in chloroplast differentiation. In: J Reinert (ed.) Chloroplasts. Results and problems in cell differentiation, vol. 10. Springer, Berlin-Heidelberg, pp. 201-224

    Google Scholar 

  23. Basset GJ, Latimer S, Fatihi A, Soubeyrand E, Block A (2017) Phylloquinone (vitamin K1): occurrence, biosynthesis and functions. Mini Rev Med Chem 17(12):1028–1038

    CAS  PubMed  Google Scholar 

  24. Nowicka B, Kruk J (2017) Vitamin E-occurrence, biosynthesis by plants and functions in human nutrition. Mini Rev Med Chem 17(12):1039–1052

    PubMed  Google Scholar 

  25. Brillouet J-M, Romieu C, Schoefs B, Solymosi K, Cheynier V, Fulcrand H, Verdeil J-L, Conéjéro G (2013) The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta. Ann Bot 112(6):1003–1014

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wolak N, Zawrotniak M, Gogol M, Kozik A, Rapala-Kozik M (2017) Vitamins B1, B2, B3 and B9–occurrence, biosynthesis pathways and functions in human nutrition. Mini Rev Med Chem 17(12):1075–1111

    CAS  PubMed  Google Scholar 

  27. Vranová E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700

    PubMed  Google Scholar 

  28. Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105

    CAS  PubMed  Google Scholar 

  29. Nielsen AZ, Mellor SB, Vavitsas K, Wlodarczyk AJ, Gnanasekaran T, de Jesus MPRH, King BC, Bakowski K, Jensen PE (2016) Extending the biosynthetic repertoires of cyanobacteria and chloroplasts. Plant J 87(1):87–102

    Google Scholar 

  30. Andersson M, Dörmann P (2009) Chloroplast membrane lipid biosynthesis and transport. Plant Cell Monogr 13:125–158

    CAS  Google Scholar 

  31. Block MA, Dorne A-J, Joyard J, Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. J Biol Chem 258(21):13281–13286

    CAS  PubMed  Google Scholar 

  32. Rolland N, Ferro M, Seigneurin-Berny D, Garin J, Block M, Joyard J (2008) The chloroplast envelope proteome and lipidome. In: Plant Cell Monographs, Springer, Berlin, Heidelberg, pp 41–88

    Google Scholar 

  33. Spetea C, Aronsson H (2012) Mechanisms of transport across membranes in plant chloroplasts. Curr Chem Biol 6(3):230–243

    Google Scholar 

  34. Weise SE, van Wijk KJ, Sharkey TD (2011) The role of transitory starch in C3, CAM, and C4 metabolism and opportunities for engineering leaf starch accumulation. J Exp Bot 62(9):3109–3118

    CAS  PubMed  Google Scholar 

  35. Wellburn A, Quail P, Gunning B (1977) Examination of ribosome-like particles in isolated prolamellar bodies. Planta 134(1):45–52

    CAS  PubMed  Google Scholar 

  36. Tiller N, Bock R (2014) The translational apparatus of plastids and its role in plant development. Mol Plant 7(7):1105–1120

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ahmed T, Yin Z, Bhushan S (2016) Cryo-EM structure of the large subunit of the spinach chloroplast ribosome. Sci Rep 6:35793

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dünschede B, Träger C, Schröder CV, Ziehe D, Walter B, Funke S, Hofmann E, Schünemann D (2015) Chloroplast SRP54 was recruited for posttranslational protein transport via complex formation with chloroplast SRP43 during land plant evolution. J Biol Chem 290(21):13104–13114

    PubMed  PubMed Central  Google Scholar 

  39. Bendich AJ, Smith SB (1990) Moving pictures and pulsed-field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria. Curr Genet 17(5):421–425

    CAS  Google Scholar 

  40. Kolodner R, Tewari K (1975) The molecular size and conformation of the chloroplast DNA from higher plants. Biochim Biophys Acta 402(3):372–390

    Google Scholar 

  41. Bendich AJ (1987) Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays 6(6):279–282

    CAS  PubMed  Google Scholar 

  42. Solymosi K, Keresztes Á (2012) Plastid structure, diversification and interconversions II. Land Plants. Current Chem Biol 6(3):187–204

    Google Scholar 

  43. Pfalz J, Pfannschmidt T (2013) Essential nucleoid proteins in early chloroplast development. Trends Plant Sci 18(4):186–194

    CAS  PubMed  Google Scholar 

  44. Brangeon J, Mustardy L (1979) Ontogenetic assembly of intra-chloroplastic lamellae viewed in 3-dimension. Biologie Cellulaire 36:71-80

    Google Scholar 

  45. Lindquist E, Solymosi K, Aronsson H (2016) Vesicles are persistent features of different plastids. Traffic 17(10):1125–1138

    CAS  PubMed  Google Scholar 

  46. Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L (2018) Carotenoid metabolism in plants: the role of plastids. Mol Plant 11(1):58–74

    PubMed  Google Scholar 

  47. Bollivar DW (2006) Recent advances in chlorophyll biosynthesis. Photosynth Res 89:1–22

    Google Scholar 

  48. Solymosi K, Aronsson H (2013) Etioplasts and their significance in chloroplast biogenesis. In: Biswal B, Krupinska K, Biswal U (eds) Advances in photosynthesis and respiration, Plastid development in leaves during growth and senescence, vol 36. Springer, Cham, pp 39–71

    Google Scholar 

  49. Almsherqi ZAM (2010) The missing dimension of cell membrane organization. In: Study on cubic membrane structure and function. Available online at: https://scholarbank.nus.edu.sg/handle/10635/22981

  50. Almsherqi ZA, Kohlwein SD, Deng Y (2006) Cubic membranes: a legend beyond the Flatland of cell membrane organization. J Cell Biol 173(6):839–844

    Google Scholar 

  51. Almsherqi ZA, Landh T, Kohlwein SD, Deng Y (2009) Cubic membranes: the missing dimension of cell membrane organization. Int Rev Cell Mol Biol 274:275–342

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Solymosi K, Mysliwa-Kurdziel B (2021) The role of membranes and lipid-protein interactions in the Mg-branch of tetrapyrrole biosynthesis. Front Plant Sci 12:663309

    PubMed  PubMed Central  Google Scholar 

  53. Gunning B (1965) The greening process in plastids: 1. The structure of the prolamellar body. Protoplasma 60:111–130

    Google Scholar 

  54. Gunning B (2001) Membrane geometry of “open” prolamellar bodies. Protoplasma 215:4–15

    CAS  PubMed  Google Scholar 

  55. Solymosi K, Schoefs B (2010) Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynth Res 105(2):143–166

    CAS  PubMed  Google Scholar 

  56. Armarego-Marriott T, Sandoval-Ibañez O, Kowalewska Ł (2020) Beyond the darkness: recent lessons from etiolation and de-etiolation studies. J Exp Bot 71(4):1215–1225

    CAS  PubMed  Google Scholar 

  57. Bykowski M, Mazur R, Buszewicz D, Szach J, Mostowska A, Kowalewska Ł (2020) Spatial nano-morphology of the prolamellar body in etiolated Arabidopsis thaliana plants with disturbed pigment and polyprenol composition. Front Cell Dev Biol 8:586628

    PubMed  PubMed Central  Google Scholar 

  58. Schnepf E (1961) Plastidenstrukturen bei passiflora. Protoplasma 54:310–313

    Google Scholar 

  59. Hammond CT, Mahlberg PG (1978) Ultrastructural development of capitate glandular hairs of Cannabis sativa L. (Cannabaceae). Am J Bot 65(2):140–151

    Google Scholar 

  60. Kim E-S, Mahlberg PG (1997) Plastid development in disc cells of glandular trichomes of Cannabis (Cannabaceae). Mol Cells 7:352–359

    Google Scholar 

  61. Turner GW, Davis EM, Croteau RB (2012) Immunocytochemical localization of short-chain family reductases involved in menthol biosynthesis in peppermint. Planta 235:1185–1195

    CAS  PubMed  Google Scholar 

  62. Turner GW, Gershenzon J, Croteau RB (2000) Development of peltate glandular trichomes of peppermint. Plant Physiol 124(2):665–680

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Amelunxen F (1965) Elektronenmikroskopische Untersuchungen an den Drüsenschuppen von Mentha piperita L. 1. Planta Med 13(4):457–473

    Google Scholar 

  64. Böszörményi A, Dobi A, Skribanek A, Pávai M, Solymosi K (2020) The effect of light on plastid differentiation, chlorophyll biosynthesis, and essential oil composition in rosemary (Rosmarinus officinalis) leaves and cotyledons. Front Plant Sci 11:196

    PubMed  PubMed Central  Google Scholar 

  65. Garab G, Yaguzhinsky LS, Dlouhý O, Nesterov SV, Špunda V, Gasanoff ES (2022) Structural and functional roles of non-bilayer lipid phases of chloroplast thylakoid membranes and mitochondrial inner membranes. Prog Lipid Res 86:101163

    CAS  PubMed  Google Scholar 

  66. Garab G, Ughy B, Goss R (2016) Role of MGDG and non-bilayer lipid phases in the structure and dynamics of chloroplast thylakoid membranes. Subcell Biochem 86:127–157

    CAS  PubMed  Google Scholar 

  67. Dlouhý O, Kurasová I, Karlický V, Javornik U, Šket P, Petrova NZ, Krumova SB, Plavec J, Ughy B, Špunda V (2020) Modulation of non-bilayer lipid phases and the structure and functions of thylakoid membranes: effects on the water-soluble enzyme violaxanthin de-epoxidase. Sci Rep 10(1):11959

    PubMed  PubMed Central  Google Scholar 

  68. Garab G, Ughy B, Waard P, Akhtar P, Javornik U, Kotakis C, Šket P, Karlický V, Materová Z, Špunda V (2017) Lipid polymorphism in chloroplast thylakoid membranes–as revealed by 31P-NMR and time-resolved merocyanine fluorescence spectroscopy. Sci Rep 7(1):13343

    PubMed  PubMed Central  Google Scholar 

  69. Ytterberg AJ, Peltier J-B, Van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140(3):984–997

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Austin JR, Frost E, Vidi P-A, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18(7):1693–1703

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lundquist PK, Poliakov A, Bhuiyan NH, Zybailov B, Sun Q, van Wijk KJ (2012) The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. Plant Physiol 158(3):1172–1192

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rottet S, Besagni C, Kessler F (2015) The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim Biophys Acta Bioenerg 1847(9):889–899

    CAS  Google Scholar 

  73. Solymosi K, Bertrand M (2012) Soil metals, chloroplasts, and secure crop production: a review. Agron Sustain Dev 32(1):245–272

    CAS  Google Scholar 

  74. Zhang R, Wise RR, Struck KR, Sharkey TD (2010) Moderate heat stress of Arabidopsis thaliana leaves causes chloroplast swelling and plastoglobule formation. Photosynth Res 105(2):123–134

    CAS  PubMed  Google Scholar 

  75. Karim S, Alezzawi M, Garcia-Petit C, Solymosi K, Khan NZ, Lindquist E, Dahl P, Hohmann S, Aronsson H (2014) A novel chloroplast localized Rab GTPase protein CPRabA5e is involved in stress, development, thylakoid biogenesis and vesicle transport in Arabidopsis. Plant Mol Biol 84(6):675–692

    CAS  PubMed  Google Scholar 

  76. Mechela A, Schwenkert S, Soll J (2019) A brief history of thylakoid biogenesis. Royal Soc Open Biol 9(1):180237

    Google Scholar 

  77. Westphal S, Soll J, Vothknecht UC (2001) A vesicle transport system inside chloroplasts. FEBS Lett 506(3):257–261

    CAS  PubMed  Google Scholar 

  78. Robinson DG, Brandizzi F, Hawes C, Nakano A (2015) Vesicles versus tubes: is endoplasmic reticulum-Golgi transport in plants fundamentally different from other eukaryotes? Plant Physiol 168(2):393–406

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Khan NZ, Lindquist E, Aronsson H (2013) New putative chloroplast vesicle transport components and cargo proteins revealed using a bioinformatics approach: an Arabidopsis model. PLoS ONE 8(4):e59898

    Google Scholar 

  80. Garcia C, Khan NZ, Nannmark U, Aronsson H (2010) The chloroplast protein CPSAR1, dually localized in the stroma and the inner envelope membrane, is involved in thylakoid biogenesis. Plant J 63(1):73–85.

    Google Scholar 

  81. Hertle AP, García-Cerdán JG, Armbruster U, Shih R, Lee JJ, Wong W, Niyogi KK (2020) A Sec14 domain protein is required for photoautotrophic growth and chloroplast vesicle formation in Arabidopsis thaliana. Proc Natl Acad Sci 117(16):9101–9111

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Jin X, Jiang Z, Zhang K, Wang P, Cao X, Yue N, Wang X, Zhang X, Li Y, Li D (2018) Three-dimensional analysis of chloroplast structures associated with virus infection. Plant Physiol 176(1):282–294

    CAS  PubMed  Google Scholar 

  83. Ounoki R, Ágh F, Hembrom R, Ünnep R, Szögi-Tatár B, Böszörményi A, Solymosi K (2021) Salt stress affects plastid ultrastructure and photosynthetic activity but not the essential oil composition in spearmint (Mentha spicata L. var. crispa “Moroccan”). Front Plant Sci 12:739467

    PubMed  PubMed Central  Google Scholar 

  84. Sági-Kazár M, Solymosi K, Solti Á (2022) Iron in leaves: chemical forms, signalling, and in-cell distribution. J Exp Bot 73(6):1717–1734

    PubMed  PubMed Central  Google Scholar 

  85. Szczepanik J, Sowiński P (2014) The occurrence of chloroplast peripheral reticulum in grasses: a matter of phylogeny or a matter of function? Acta Physiol Plant 36(5):1133–1142

    CAS  Google Scholar 

  86. Kwok E, Hanson M (2004) Stromules and the dynamic nature of plastid morphology. J Microsc 214(2):124–137

    CAS  PubMed  Google Scholar 

  87. Natesan SKA, Sullivan JA, Gray JC (2005) Stromules: a characteristic cell-specific feature of plastid morphology. J Exp Bot 56(413):787–797

    CAS  PubMed  Google Scholar 

  88. Reski R (2009) Challenges to our current view on chloroplasts. Biol Chem 390:731–738

    CAS  PubMed  Google Scholar 

  89. Hanson MR, Conklin PL (2020) Stromules, functional extensions of plastids within the plant cell. Curr Opin Plant Biol 58:25–32

    CAS  PubMed  Google Scholar 

  90. Hanson MR, Hines KM (2018) Stromules: probing formation and function. Plant Physiol 176(1):128–137

    CAS  PubMed  Google Scholar 

  91. Mullineaux PM, Exposito-Rodriguez M, Laissue PP, Smirnoff N, Park E (2020) Spatial chloroplast-to-nucleus signalling involving plastid–nuclear complexes and stromules. Philos Trans R Soc B 375(1801):20190405

    CAS  Google Scholar 

  92. Sierra J, Escobar-Tovar L, Leon P (2023) Plastids: diving into their diversity, their functions, and their role in plant development. J Exp Bot 74(8):2508–2526

    CAS  PubMed  Google Scholar 

  93. Khandakar K, Bradbeer JW (1989) Primary leaf growth in bean (Phaseolus vulgaris). Cytologia 54(3):409–417

    Google Scholar 

  94. Lopez-Juez E, Pyke KA (2004) Plastids unleashed: their development and their integration in plant development. Int J Dev Biol 49(5–6):557–577

    Google Scholar 

  95. Aach H, Bode H, Robinson DG, Graebe JE (1997) ent-Kaurene synthase is located in proplastids of meristematic shoot tissues. Planta 202(2):211–219

    CAS  Google Scholar 

  96. Boland MJ, Schubert KR (1983) Biosynthesis of purines by a proplastid fraction from soybean nodules. Arch Biochem Biophys 220(1):179–187

    CAS  PubMed  Google Scholar 

  97. Wise RR (2007) The diversity of plastid form and function. In: Wise RR, Hoober K (eds.) Advances in photosynthesis and respiration, The structure and function of plastids, vol 23. Springer, Dordrecht, pp 3–26

    Google Scholar 

  98. Pogson BJ, Ganguly D, Albrecht-Borth V (2015) Insights into chloroplast biogenesis and development. Biochim Biophys Acta Bioenerg 1847(9):1017–1024

    CAS  Google Scholar 

  99. Solymosi K, Martinez K, Kristóf Z, Sundqvist C, Böddi B (2004) Plastid differentiation and chlorophyll biosynthesis in different leaf layers of white cabbage (Brassica oleracea cv. Capitata). Physiol Plant 121(3):520–529

    CAS  Google Scholar 

  100. Solymosi K, Bóka K, Böddi B (2006) Transient etiolation: protochlorophyll (ide) and chlorophyll forms in differentiating plastids of closed and breaking leaf buds of horse chestnut (Aesculus hippocastanum). Tree Physiol 26(8):1087–1096

    CAS  PubMed  Google Scholar 

  101. Solymosi K, Böddi B (2006) Optical properties of bud scales and protochlorophyll (ide) forms in leaf primordia of closed and opened buds. Tree Physiol 26(8):1075–1085

    CAS  PubMed  Google Scholar 

  102. Solymosi K, Morandi D, Bóka K, Böddi B, Schoefs B (2012) High biological variability of plastids, photosynthetic pigments and pigment forms of leaf primordia in buds. Planta 235:1035–1049

    CAS  PubMed  Google Scholar 

  103. Vitányi B, Kósa A, Solymosi K, Böddi B (2013) Etioplasts with protochlorophyll and protochlorophyllide forms in the under-soil epicotyl segments of pea (Pisum sativum) seedlings grown under natural light conditions. Physiol Plant 148(2):307–315

    PubMed  Google Scholar 

  104. Kakuszi A, Sárvári É, Solti Á, Czégény G, Hideg É, Hunyadi-Gulyás É, Bóka K, Böddi B (2016) Light piping driven photosynthesis in the soil: low-light adapted active photosynthetic apparatus in the under-soil hypocotyl segments of bean (Phaseolus vulgaris). J Photochem Photobiol B Biol 161:422–429

    CAS  Google Scholar 

  105. Kakuszi A, Solymosi K, Böddi B (2017) Transformation of plastids in soil-shaded lowermost hypocotyl segments of bean (Phaseolus vulgaris) during a 60-day cultivation period. Physiol Plant 159(4):483–491

    CAS  PubMed  Google Scholar 

  106. Nguyen HC, Melo AA, Kruk J, Frost A, Gabruk M (2021) Photocatalytic LPOR forms helical lattices that shape membranes for chlorophyll synthesis. Nature Plants 7(4):437–444

    CAS  PubMed  Google Scholar 

  107. Floris D, Kühlbrandt W (2021) Molecular landscape of etioplast inner membranes in higher plants. Nature Plants 7(4):514–523

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Hassan S, Guallar V, Solymosi K, Aronsson H (2021) Elucidation of ligand binding and dimerization of NADPH: protochlorophyllide (Pchlide) oxidoreductase from pea (Pisum sativum L.) by structural analysis and simulations. Proteins Struct Funct Bioinform 89(10):1300–1314

    Google Scholar 

  109. Robertson D, Laetsch WM (1974) Structure and function of developing barley plastids. Plant Physiol 54(2):148–159

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Barton KA, Schattat MH, Jakob T, Hause G, Wilhelm C, Mckenna JF, Máthé C, Runions J, Van Damme D, Mathur J (2016) Epidermal pavement cells of Arabidopsis have chloroplasts. Plant Physiol 171(2):723–726

    PubMed  Google Scholar 

  111. Liu H, Wang X, Ren K, Li K, Wei M, Wang W, Sheng X (2017) Light deprivation-induced inhibition of chloroplast biogenesis does not arrest embryo morphogenesis but strongly reduces the accumulation of storage reserves during embryo maturation in Arabidopsis. Front Plant Sci 8:1287

    PubMed  PubMed Central  Google Scholar 

  112. Mustárdy L, Buttle K, Steinbach G, Garab G (2008) The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly. Plant Cell 20(10):2552–2557

    PubMed  PubMed Central  Google Scholar 

  113. Mazur R, Mostowska A, Kowalewska Ł (2021) How to measure grana–ultrastructural features of thylakoid membranes of plant chloroplasts. Front Plant Sci 12:756009

    PubMed  PubMed Central  Google Scholar 

  114. Nagy G, Garab G (2021) Neutron scattering in photosynthesis research: recent advances and perspectives for testing crop plants. Photosynth Res 150(1–3):41–49

    CAS  PubMed  Google Scholar 

  115. Dlouhý O, Karlický V, Arshad R, Zsiros O, Domonkos I, Kurasová I, Wacha AF, Morosinotto T, Bóta A, Kouřil R (2021) Lipid polymorphism of the subchloroplast—granum and stroma thylakoid membrane–particles. I. 31P-NMR Spectroscopy. Cells 10(9):2363

    Google Scholar 

  116. Ünnep R, Zsiros O, Solymosi K, Kovács L, Lambrev PH, Tóth T, Schweins R, Posselt D, Székely NK, Rosta L (2014) The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering. Biochim Biophys Acta Bioenerg 9:1572–1580

    Google Scholar 

  117. Yin L, Lundin B, Bertrand M, Nurmi M, Solymosi K, Kangasjärvi S, Aro E-M, Schoefs B, Spetea C (2010) Role of thylakoid ATP/ADP carrier in photoinhibition and photoprotection of photosystem II in Arabidopsis. Plant Physiol 153(2):666–677

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Dukic E, Herdean A, Cheregi O, Sharma A, Nziengui H, Dmitruk D, Solymosi K, Pribil M, Spetea C (2019) K+ and Cl− channels/transporters independently fine-tune photosynthesis in plants. Sci Rep 9(1):8639

    Google Scholar 

  119. Sun Y, Yang R, Li L, Huang J (2017) The magnesium transporter MGT10 is essential for chloroplast development and photosynthesis in Arabidopsis thaliana. Mol Plant 10(12):1584–1587

    CAS  PubMed  Google Scholar 

  120. Szabò I, Spetea C (2017) Impact of the ion transportome of chloroplasts on the optimization of photosynthesis. J Exp Bot 68(12):3115–3128

    PubMed  Google Scholar 

  121. Gunning BE, Steer MW (1975) Ultrastructure and the biology of plant cells. Annu Rev Plant Physiol 18(1):1–24

    Google Scholar 

  122. Firn RD, Digby J (1980) The establishment of tropic curvatures in plants. Annu Rev Plant Physiol 31(1):131–148

    Google Scholar 

  123. Morita MT (2010) Directional gravity sensing in gravitropism. Annu Rev Plant Biol 61:705–720

    CAS  PubMed  Google Scholar 

  124. Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136(6):1005–1016

    CAS  PubMed  Google Scholar 

  125. Thomson W, Whatley JM (1980) Development of nongreen plastids. Annu Rev Plant Physiol 31(1):375–394

    Google Scholar 

  126. Newcomb EH (1967) Fine structure of protein-storing plastids in bean root tips. J Cell Biol 33(1):143–163

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Juneau P, Le Lay P, Böddi B, Samson G, Popovic R (2002) Relationship between the structural and functional changes of the photosynthetic apparatus during chloroplast–chromoplast transition in flower bud of Lilium longiflorum. Photochem Photobiol 75(4):377–381

    CAS  PubMed  Google Scholar 

  128. Devidé Z, Ljubešić N (1974) The reversion of chromoplasts to chloroplasts in pumpkin fruits. Z Pflanzenphysiol 73(4):296–306

    Google Scholar 

  129. Grönegress P (1971) The greening of chromoplasts in Daucus carota L. Planta 98(3):274–278

    PubMed  Google Scholar 

  130. Whatley J (1985) Chromoplasts in some cycads. New Phytol 101(4):595–604

    Google Scholar 

  131. Ljubesic N, Wrischer M, Devide Z (1991) Chromoplasts - the last stages in plastid development. Int J Dev Biol 35:251–258

    Google Scholar 

  132. Simpson D, Baqar M, Lee T (1977) Chromoplast ultrastructure of Capsicum carotenoid mutants I. Ultrastructure and carotenoid composition of a new mutant. Z Pflanzenphysiol 83(4):293–308

    CAS  Google Scholar 

  133. Liedvogel B, Sitte P, Falk H (1976) Chromoplasts in the daffodil: fine structure and chemistry. Cytobiologie 12:155–174

    CAS  Google Scholar 

  134. Mulisch M, Krupinska K (2013) Ultrastructural analyses of senescence associated dismantling of chloroplasts revisited. In: Biswal B, Krupinska K, Biswal U (eds) Advances in photosynthesis and respiration, Plastid development in leaves during growth and senescence, vol 36. Springer, Dordrecht, pp 307–335

    Google Scholar 

  135. Ghaffar R, Weidinger M, Mähnert B, Schagerl M, Lichtscheidl I (2018) Adaptive responses of mature giant chloroplasts in the deep-shade lycopod Selaginella erythropus to prolonged light and dark periods. Plant Cell Environ 41(8):1791–1805

    CAS  PubMed  Google Scholar 

  136. Liu JW, Li SF, Wu CT, Valdespino IA, Ho JF, Wu YH, Chang HM, Guu TY, Kao MF, Chesson C (2020) Gigantic chloroplasts, including bizonoplasts, are common in shade-adapted species of the ancient vascular plant family Selaginellaceae. Am J Bot 107(4):562–576

    PubMed  Google Scholar 

  137. Sheue C-R, Liu J-W, Ho J-F, Yao A-W, Wu Y-H, Das S, Tsai C-C, Chu H-A, Ku MS, Chesson P (2015) A variation on chloroplast development: the bizonoplast and photosynthetic efficiency in the deep-shade plant Selaginella erythropus. Am J Bot 102(4):500–511

    PubMed  Google Scholar 

  138. Sheue C-R, Sarafis V, Kiew R, Liu H-Y, Salino A, Kuo-Huang L-L, Yang Y-P, Tsai C-C, Lin C-H, Yong JW (2007) Bizonoplast, a unique chloroplast in the epidermal cells of microphylls in the shade plant Selaginella erythropus (Selaginellaceae). Am J Bot 94(12):1922–1929

    PubMed  Google Scholar 

  139. Graham RM, Lee DW, Norstog K (1993) Physical and ultrastructural basis of blue leaf iridescence in two neotropical ferns. Am J Bot 80(2):198–203

    Google Scholar 

  140. Jacobs M, Lopez-Garcia M, Phrathep O-P, Lawson T, Oulton R, Whitney HM (2016) Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency. Nature Plants 2:16162

    CAS  PubMed  Google Scholar 

  141. Pao S-H, Tsai P-Y, Peng C-I, Chen P-J, Tsai C-C, Yang E-C, Shih M-C, Chen J, Yang J-Y, Chesson P (2018) Lamelloplasts and minichloroplasts in Begoniaceae: iridescence and photosynthetic functioning. J Plant Res 131:655–670

    CAS  PubMed  Google Scholar 

  142. Fujinami R, Yoshihama I, Imaichi R (2011) Dimorphic chloroplasts in the epidermis of Podostemoideae, a subfamily of the unique aquatic angiosperm family Podostemaceae. J Plant Res 124:601–605

    CAS  PubMed  Google Scholar 

  143. Pinard D, Mizrachi E (2018) Unsung and understudied: plastids involved in secondary growth. Curr Opin Plant Biol 42:30–36

    CAS  PubMed  Google Scholar 

  144. Ingle RA, Collett H, Cooper K, Takahashi Y, Farrant JM, Illing N (2008) Chloroplast biogenesis during rehydration of the resurrection plant Xerophyta humilis: parallels to the etioplast–chloroplast transition. Plant Cell Environ 31(12):1813–1824

    CAS  PubMed  Google Scholar 

  145. Solymosi K, Tuba Z, Böddi B (2013) Desiccoplast–etioplast–chloroplast transformation under rehydration of desiccated poikilochlorophyllous Xerophyta humilis leaves in the dark and upon subsequent illumination. J Plant Physiol 170(6):583–590

    CAS  PubMed  Google Scholar 

  146. Charuvi D, Nevo R, Shimoni E, Naveh L, Zia A, Adam Z, Farrant JM, Kirchhoff H, Reich Z (2015) Photoprotection conferred by changes in photosynthetic protein levels and organization during dehydration of a homoiochlorophyllous resurrection plant. Plant Physiol 167(4):1554–1565

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Nagy-Déri H, Péli E, Georgieva K, Tuba Z (2011) Changes in chloroplast morphology of different parenchyma cells in leaves of Haberlea rhodopensis Friv. during desiccation and following rehydration. Photosynthetica 49:119–126

    Google Scholar 

  148. Georgieva K, Rapparini F, Bertazza G, Mihailova G, Sárvári É, Solti Á, Keresztes Á (2017) Alterations in the sugar metabolism and in the vacuolar system of mesophyll cells contribute to the desiccation tolerance of Haberlea rhodopensis ecotypes. Protoplasma 254:193–201

    CAS  PubMed  Google Scholar 

  149. Georgieva K, Sárvári É, Keresztes Á (2010) Protection of thylakoids against combined light and drought by a lumenal substance in the resurrection plant Haberlea rhodopensis. Ann Bot 105(1):117–126

    Google Scholar 

  150. Mihailova G, Christov NK, Sárvári É, Solti Á, Hembrom R, Solymosi K, Keresztes Á, Velitchkova M, Popova AV, Simova-Stoilova L (2022) Reactivation of the photosynthetic apparatus of resurrection plant Haberlea rhodopensis during the early phase of recovery from drought-and freezing-induced desiccation. Plants 11(17):2185

    Google Scholar 

  151. Mihailova G, Solti Á, Sárvári É, Keresztes Á, Rapparini F, Velitchkova M, Simova-Stoilova L, Aleksandrov V, Georgieva K (2020) Freezing tolerance of photosynthetic apparatus in the homoiochlorophyllous resurrection plant Haberlea rhodopensis. Environ Exp Bot 178:104157

    CAS  Google Scholar 

  152. Koi S, Kita Y, Hirayama Y, Rutishauser R, Huber KA, Kato M (2012) Molecular phylogenetic analysis of Podostemaceae: implications for taxonomy of major groups. Bot J Linn Soc 169(3):461–492

    Google Scholar 

  153. Masters NJ, Lopez-Garcia M, Oulton R, Whitney HM (2018) Characterization of chloroplast iridescence in Selaginella erythropus. J R Soc Interface 15(148):20180559

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Kjernsmo K, Hall JR, Doyle C, Khuzayim N, Cuthill IC, Scott-Samuel NE, Whitney HM (2018) Iridescence impairs object recognition in bumblebees. Sci Rep 8(1):8095

    PubMed  PubMed Central  Google Scholar 

  155. Daher Z, Recorbet G, Solymosi K, Wienkoop S, Mounier A, Morandi D, Lherminier J, Wipf D, Dumas-Gaudot E, Schoefs B (2017) Changes in plastid proteome and structure in arbuscular mycorrhizal roots display a nutrient starvation signature. Physiol Plant 159(1):13–29

    CAS  PubMed  Google Scholar 

  156. Bonfante P (2001) At the interface between mycorrhizal fungi and plants: the structural organization of cell wall, plasma membrane and cytoskeleton. In: Hock B (ed.) Fungal associations. Springer, Berlin, Heidelberg, pp 45–61

    Google Scholar 

  157. Kovács G, Kottke I, Oberwinkler F (2003) Light and electron microscopic study on the mycorrhizae of sporophytes of Botrychium virginianum-arbuscular structure resembling fossil forms. Plant Biol 5(05):574–580

    Google Scholar 

  158. Fester T, Lohse S, Halfmann K (2007) “Chromoplast” development in arbuscular mycorrhizal roots. Phytochemistry 68(1):92–100

    CAS  PubMed  Google Scholar 

  159. Fester T, Strack D, Hause B (2001) Reorganization of tobacco root plastids during arbuscule development. Planta 213:864–868

    CAS  PubMed  Google Scholar 

  160. Park E, Caplan JL, Dinesh-Kumar SP (2018) Dynamic coordination of plastid morphological change by cytoskeleton for chloroplast-nucleus communication during plant immune responses. Plant Signal Behav 13(8):e1500064

    PubMed  PubMed Central  Google Scholar 

  161. Brillouet J-M, Romieu C, Lartaud M, Jublanc E, Torregrosa L, Cazevieille C (2014) Formation of vacuolar tannin deposits in the chlorophyllous organs of Tracheophyta: from shuttles to accretions. Protoplasma 251(6):1387–1393

    CAS  PubMed  Google Scholar 

  162. Brillouet J-M, Verdeil J-L, Odoux E, Lartaud M, Grisoni M, Conéjéro G (2014) Phenol homeostasis is ensured in vanilla fruit by storage under solid form in a new chloroplast-derived organelle, the phenyloplast. J Exp Bot 65(9):2427–2435

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Kruk J (2005) Occurrence of chlorophyll precursors in leaves of cabbage heads–the case of natural etiolation. J Photochem Photobiol B Biol 80(3):187–194

    CAS  Google Scholar 

  164. Irieda H, Takano Y (2021) Epidermal chloroplasts are defense-related motile organelles equipped with plant immune components. Nat Commun 12(1):2739

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Offermann S, Okita TW, Edwards GE (2011) Resolving the compartmentation and function of C4 photosynthesis in the single-cell C4 species Bienertia sinuspersici. Plant Physiol 155(4):1612–1628

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Jurić I, González-Pérez V, Hibberd JM, Edwards G, Burroughs NJ (2017) Size matters for single-cell C4 photosynthesis in Bienertia. J Exp Bot 68(2):255–267

    PubMed  Google Scholar 

  167. von Caemmerer S, Edwards GE, Koteyeva N, Cousins AB (2014) Single cell C4 photosynthesis in aquatic and terrestrial plants: a gas exchange perspective. Aquat Bot 118:71–80

    Google Scholar 

  168. Lindquist E, Aronsson H (2018) Chloroplast vesicle transport. Photosynth Res 138:361–371

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wani SH, Kumar V, Khare T, Guddimalli R, Parveda M, Solymosi K, Suprasanna P, Kavi Kishor P (2020) Engineering salinity tolerance in plants: progress and prospects. Planta 251:1–29

    Google Scholar 

  170. Wani SH, Sah SK, Sági L, Solymosi K (2015) Transplastomic plants for innovations in agriculture. A Review. Agron Sustain Dev 35:1391–1430

    Google Scholar 

  171. Jensen PE, Scharff LB (2019) Engineering of plastids to optimize the production of high-value metabolites and proteins. Curr Opin Biotechnol 59:8–15

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This chapter is dedicated to Professor Győző Garab (Biological Research Centre, Szeged, Hungary) on the occasion of his 75th birthday. The authors would like to thank Johanna Lethin for her contribution to the compilation of the first edition of this chapter. The authors are grateful to Csilla Jónás for transmission electron microscopic sample preparation and to Jean-Marc Brillouet (SupAgro, Montpellier, France) for providing micrographs about tannoplast and phenyloplast. This work was supported by Carl Tryggers Foundation 19:22 and the Swedish Research Council 2021-04265 (to H.A.), the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the OTKA FK 124748, and the ÚNKP-22-5 and ÚNKP-23-5 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund (to K.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Solymosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aronsson, H., Solymosi, K. (2024). Diversification of Plastid Structure and Function in Land Plants. In: Maréchal, E. (eds) Plastids. Methods in Molecular Biology, vol 2776. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3726-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3726-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3725-8

  • Online ISBN: 978-1-0716-3726-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics