Skip to main content

Mechanistic Model-Driven Biodesign in Mammalian Synthetic Biology

  • Protocol
  • First Online:
Mammalian Synthetic Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2774))

  • 215 Accesses

Abstract

Mathematical modeling plays a vital role in mammalian synthetic biology by providing a framework to design and optimize design circuits and engineered bioprocesses, predict their behavior, and guide experimental design. Here, we review recent models used in the literature, considering mathematical frameworks at the molecular, cellular, and system levels. We report key challenges in the field and discuss opportunities for genome-scale models, machine learning, and cybergenetics to expand the capabilities of model-driven mammalian cell biodesign.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng Y, Sriram G (2010) Mathematical modeling: bridging the gap between concept and realization in synthetic biology. J Biomed Biotechnol 2010:541609. https://doi.org/10.1155/2010/541609

    Article  CAS  PubMed Central  Google Scholar 

  2. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338. https://doi.org/10.1038/35002125

    Article  CAS  Google Scholar 

  3. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342. https://doi.org/10.1038/35002131

    Article  CAS  Google Scholar 

  4. Zehnder T, Benner P, Vingron M (2019) Predicting enhancers in mammalian genomes using supervised hidden Markov models. BMC Bioinf 20(1):157. https://doi.org/10.1186/s12859-019-2708-6

    Article  CAS  Google Scholar 

  5. Elnitski L, Jin VX, Farnham PJ, Jones SJ (2006) Locating mammalian transcription factor binding sites: a survey of computational and experimental techniques. Genome Res 16(12):1455–1464. https://doi.org/10.1101/gr.4140006

    Article  CAS  Google Scholar 

  6. Verbic A, Praznik A, Jerala R (2021) A guide to the design of synthetic gene networks in mammalian cells. FEBS J 288(18):5265–5288. https://doi.org/10.1111/febs.15652

    Article  CAS  Google Scholar 

  7. di Bernardo D, Marucci L, Menolascina F, Siciliano V (2012) Predicting synthetic gene networks. Methods Mol Biol 813:57–81. https://doi.org/10.1007/978-1-61779-412-4_4

    Article  CAS  Google Scholar 

  8. Mathur M, Xiang JS, Smolke CD (2017) Mammalian synthetic biology for studying the cell. J Cell Biol 216(1):73–82. https://doi.org/10.1083/jcb.201611002

    Article  CAS  PubMed Central  Google Scholar 

  9. Brandman O, Meyer T (2008) Feedback loops shape cellular signals in space and time. Science 322(5900):390–395. https://doi.org/10.1126/science.1160617

    Article  CAS  PubMed Central  Google Scholar 

  10. Marucci L (2017) Nanog dynamics in mouse embryonic stem cells: results from systems biology approaches. Stem Cells Int 2017:7160419. https://doi.org/10.1155/2017/7160419

    Article  CAS  PubMed Central  Google Scholar 

  11. Kramer BP, Fussenegger M (2005) Hysteresis in a synthetic mammalian gene network. Proc Natl Acad Sci U S A 102(27):9517–9522. https://doi.org/10.1073/pnas.0500345102

    Article  CAS  PubMed Central  Google Scholar 

  12. Chilov D, Fussenegger M (2004) Toward construction of a self-sustained clock-like expression system based on the mammalian circadian clock. Biotechnol Bioeng 87(2):234–242. https://doi.org/10.1002/bit.20143

    Article  CAS  Google Scholar 

  13. Tigges M, Denervaud N, Greber D, Stelling J, Fussenegger M (2010) A synthetic low-frequency mammalian oscillator. Nucleic Acids Res 38(8):2702–2711. https://doi.org/10.1093/nar/gkq121

    Article  CAS  PubMed Central  Google Scholar 

  14. Toettcher JE, Mock C, Batchelor E, Loewer A, Lahav G (2010) A synthetic-natural hybrid oscillator in human cells. Proc Natl Acad Sci U S A 107(39):17047–17052. https://doi.org/10.1073/pnas.1005615107

    Article  PubMed Central  Google Scholar 

  15. Santorelli M, Perna D, Isomura A, Garzilli I, Annunziata F, Postiglione L et al (2018) Reconstitution of an ultradian oscillator in mammalian cells by a synthetic biology approach. ACS Synth Biol 7(5):1447–1455. https://doi.org/10.1021/acssynbio.8b00083

    Article  CAS  Google Scholar 

  16. Black JB, Perez-Pinera P, Gersbach CA (2017) Mammalian synthetic biology: engineering biological systems. Annu Rev Biomed Eng 19:249–277. https://doi.org/10.1146/annurev-bioeng-071516-044649

    Article  CAS  Google Scholar 

  17. Bloom RJ, Winkler SM, Smolke CD (2015) Synthetic feedback control using an RNAi-based gene-regulatory device. J Biol Eng 9:5. https://doi.org/10.1186/s13036-015-0002-3

    Article  CAS  PubMed Central  Google Scholar 

  18. Townshend B, Kennedy AB, Xiang JS, Smolke CD (2015) High-throughput cellular RNA device engineering. Nat Methods 12(10):989–994. https://doi.org/10.1038/nmeth.3486

    Article  CAS  PubMed Central  Google Scholar 

  19. Jones TS, Oliveira SMD, Myers CJ, Voigt CA, Densmore D (2022) Genetic circuit design automation with Cello 2.0. Nat Protoc 17(4):1097–1113. https://doi.org/10.1038/s41596-021-00675-2

    Article  CAS  Google Scholar 

  20. Chen Y, Zhang S, Young EM, Jones TS, Densmore D, Voigt CA (2020) Genetic circuit design automation for yeast. Nat Microbiol 5(11):1349–1360. https://doi.org/10.1038/s41564-020-0757-2

    Article  CAS  Google Scholar 

  21. Nielsen AA, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA et al (2016) Genetic circuit design automation. Science 352(6281):aac7341. https://doi.org/10.1126/science.aac7341

    Article  CAS  Google Scholar 

  22. Muldoon JJ, Kandula V, Hong M, Donahue PS, Boucher JD, Bagheri N et al (2021) Model-guided design of mammalian genetic programs. Sci Adv 7(8). https://doi.org/10.1126/sciadv.abe9375

  23. Donahue PS, Draut JW, Muldoon JJ, Edelstein HI, Bagheri N, Leonard JN (2020) The COMET toolkit for composing customizable genetic programs in mammalian cells. Nat Commun 11(1):779. https://doi.org/10.1038/s41467-019-14147-5

    Article  CAS  PubMed Central  Google Scholar 

  24. Frei T, Cella F, Tedeschi F, Gutierrez J, Stan GB, Khammash M et al (2020) Characterization and mitigation of gene expression burden in mammalian cells. Nat Commun 11(1):4641. https://doi.org/10.1038/s41467-020-18392-x

    Article  CAS  PubMed Central  Google Scholar 

  25. Cella F, Perrino G, Tedeschi F, Viero G, Bosia C, Stan GB et al (2023) MIRELLA: a mathematical model explains the effect of microRNA-mediated synthetic genes regulation on intracellular resource allocation. Nucleic Acids Res 51(7):3452–3464. https://doi.org/10.1093/nar/gkad151

    Article  CAS  PubMed Central  Google Scholar 

  26. Jones RD, Qian Y, Siciliano V, DiAndreth B, Huh J, Weiss R et al (2020) An endoribonuclease-based feedforward controller for decoupling resource-limited genetic modules in mammalian cells. Nat Commun 11(1):5690. https://doi.org/10.1038/s41467-020-19126-9

    Article  CAS  PubMed Central  Google Scholar 

  27. Santorelli M, Lam C, Morsut L (2019) Synthetic development: building mammalian multicellular structures with artificial genetic programs. Curr Opin Biotechnol 59:130–140. https://doi.org/10.1016/j.copbio.2019.03.016

    Article  CAS  PubMed Central  Google Scholar 

  28. Aydin O, Passaro AP, Raman R, Spellicy SE, Weinberg RP, Kamm RD et al (2022) Principles for the design of multicellular engineered living systems. APL Bioeng 6(1):010903. https://doi.org/10.1063/5.0076635

    Article  CAS  PubMed Central  Google Scholar 

  29. Wieland M, Fussenegger M (2012) Engineering molecular circuits using synthetic biology in mammalian cells. Annu Rev Chem Biomol Eng 3:209–234. https://doi.org/10.1146/annurev-chembioeng-061010-114145

    Article  CAS  Google Scholar 

  30. Matsuda M, Koga M, Woltjen K, Nishida E, Ebisuya M (2015) Synthetic lateral inhibition governs cell-type bifurcation with robust ratios. Nat Commun 6:6195. https://doi.org/10.1038/ncomms7195

    Article  CAS  Google Scholar 

  31. Matsuda M, Koga M, Nishida E, Ebisuya M (2012) Synthetic signal propagation through direct cell-cell interaction. Sci Signal 5(220):ra31. https://doi.org/10.1126/scisignal.2002764

    Article  Google Scholar 

  32. Morsut L, Roybal KT, Xiong X, Gordley RM, Coyle SM, Thomson M et al (2016) Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164(4):780–791. https://doi.org/10.1016/j.cell.2016.01.012

    Article  CAS  PubMed Central  Google Scholar 

  33. Li P, Markson JS, Wang S, Chen S, Vachharajani V, Elowitz MB (2018) Morphogen gradient reconstitution reveals Hedgehog pathway design principles. Science 360(6388):543–548. https://doi.org/10.1126/science.aao0645

    Article  CAS  PubMed Central  Google Scholar 

  34. Sprinzak D, Lakhanpal A, LeBon L, Garcia-Ojalvo J, Elowitz MB (2011) Mutual inactivation of Notch receptors and ligands facilitates developmental patterning. PLoS Comput Biol 7(6):e1002069. https://doi.org/10.1371/journal.pcbi.1002069

    Article  CAS  PubMed Central  Google Scholar 

  35. Shaya O, Binshtok U, Hersch M, Rivkin D, Weinreb S, Amir-Zilberstein L et al (2017) Cell-cell contact area affects notch signaling and Notch-dependent patterning. Dev Cell 40(5):505–11 e6. https://doi.org/10.1016/j.devcel.2017.02.009

    Article  CAS  PubMed Central  Google Scholar 

  36. Montes-Olivas S, Marucci L, Homer M (2019) Mathematical models of organoid cultures. Front Genet 10:873. https://doi.org/10.3389/fgene.2019.00873

    Article  CAS  PubMed Central  Google Scholar 

  37. Gorochowski TE, Hauert S, Kreft JU, Marucci L, Stillman NR, Tang TD et al (2020) Toward engineering biosystems with emergent collective functions. Front Bioeng Biotechnol 8:705. https://doi.org/10.3389/fbioe.2020.00705

    Article  PubMed Central  Google Scholar 

  38. Montes-Olivas S, Legge D, Lund A et al (2023) In-silico and in-vitro morphometric analysis of intestinal organoids. PLoS Comput Biol 19(8):e1011386. https://doi.org/10.1371/journal.pcbi.1011386

  39. Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z et al (2017) iML1515, a knowledgebase that computes Escherichia coli traits. Nat Biotechnol 35(10):904–908. https://doi.org/10.1038/nbt.3956

    Article  CAS  PubMed Central  Google Scholar 

  40. Passi A, Tibocha-Bonilla JD, Kumar M, Tec-Campos D, Zengler K, Zuniga C (2021) Genome-scale metabolic modeling enables in-depth understanding of big data. Meta 12(1). https://doi.org/10.3390/metabo12010014

  41. Fang X, Lloyd CJ, Palsson BO (2020) Reconstructing organisms in silico: genome-scale models and their emerging applications. Nat Rev Microbiol 18(12):731–743. https://doi.org/10.1038/s41579-020-00440-4

    Article  CAS  PubMed Central  Google Scholar 

  42. Gu C, Kim GB, Kim WJ, Kim HU, Lee SY (2019) Current status and applications of genome-scale metabolic models. Genome Biol 20(1):121. https://doi.org/10.1186/s13059-019-1730-3

    Article  PubMed Central  Google Scholar 

  43. Chen K, Gao Y, Mih N, O'Brien EJ, Yang L, Palsson BO (2017) Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation. Proc Natl Acad Sci U S A 114(43):11548–11553. https://doi.org/10.1073/pnas.1705524114

    Article  CAS  PubMed Central  Google Scholar 

  44. Lloyd CJ, Ebrahim A, Yang L, King ZA, Catoiu E, O’Brien EJ et al (2018) COBRAme: a computational framework for genome-scale models of metabolism and gene expression. PLoS Comput Biol 14(7):e1006302. https://doi.org/10.1371/journal.pcbi.1006302

    Article  CAS  PubMed Central  Google Scholar 

  45. Landon S, Rees-Garbutt J, Marucci L, Grierson C (2019) Genome-driven cell engineering review: in vivo and in silico metabolic and genome engineering. Essays Biochem 63(2):267–284. https://doi.org/10.1042/EBC20180045

    Article  CAS  PubMed Central  Google Scholar 

  46. Lv X, Hueso-Gil A, Bi X, Wu Y, Liu Y, Liu L et al (2022) New synthetic biology tools for metabolic control. Curr Opin Biotechnol 76:102724. https://doi.org/10.1016/j.copbio.2022.102724

    Article  CAS  Google Scholar 

  47. Wang H, Robinson JL, Kocabas P, Gustafsson J, Anton M, Cholley PE et al (2021) Genome-scale metabolic network reconstruction of model animals as a platform for translational research. Proc Natl Acad Sci U S A 118(30). https://doi.org/10.1073/pnas.2102344118

  48. Robinson JL, Kocabas P, Wang H, Cholley PE, Cook D, Nilsson A et al (2020) An atlas of human metabolism. Sci Signal 13(624). https://doi.org/10.1126/scisignal.aaz1482

  49. Kachhawaha K, Singh S, Joshi K, Nain P, Singh SK (2022) Bioprocessing of recombinant proteins from Escherichia coli inclusion bodies: insights from structure-function relationship for novel applications. Prep Biochem Biotechnol 53:1–25. https://doi.org/10.1080/10826068.2022.2155835

    Article  CAS  Google Scholar 

  50. Strain B, Morrissey J, Antonakoudis A, Kontoravdi C (2023) Genome-scale models as a vehicle for knowledge transfer from microbial to mammalian cell systems. Comput Struct Biotechnol J 21:1543–1549. https://doi.org/10.1016/j.csbj.2023.02.011

    Article  CAS  PubMed Central  Google Scholar 

  51. Karr JR, Phillips NC, Covert MW (2014) WholeCellSimDB: a hybrid relational/HDF database for whole-cell model predictions. Database (Oxford) 2014. https://doi.org/10.1093/database/bau095

  52. Karr JR, Sanghvi JC, Macklin DN, Arora A, Covert MW (2013) WholeCellKB: model organism databases for comprehensive whole-cell models. Nucleic Acids Res 41(Database issue):D787–D792. https://doi.org/10.1093/nar/gks1108

    Article  CAS  Google Scholar 

  53. Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B Jr et al (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150(2):389–401. https://doi.org/10.1016/j.cell.2012.05.044

    Article  CAS  PubMed Central  Google Scholar 

  54. Ahn-Horst TA, Mille LS, Sun G, Morrison JH, Covert MW (2022) An expanded whole-cell model of E. coli links cellular physiology with mechanisms of growth rate control. NPJ Syst Biol Appl 8(1):30. https://doi.org/10.1038/s41540-022-00242-9

    Article  CAS  PubMed Central  Google Scholar 

  55. Carrera J, Covert MW (2015) Why build whole-cell models? Trends Cell Biol 25(12):719–722. https://doi.org/10.1016/j.tcb.2015.09.004

    Article  PubMed Central  Google Scholar 

  56. Macklin DN, Ahn-Horst TA, Choi H, Ruggero NA, Carrera J, Mason JC et al (2020) Simultaneous cross-evaluation of heterogeneous E. coli datasets via mechanistic simulation. Science 369(6502):eaav3751. https://doi.org/10.1126/science.aav3751

    Article  CAS  PubMed Central  Google Scholar 

  57. Rees-Garbutt J, Chalkley O, Landon S, Purcell O, Marucci L, Grierson C (2020) Designing minimal genomes using whole-cell models. Nat Commun 11(1):836. https://doi.org/10.1038/s41467-020-14545-0

    Article  CAS  PubMed Central  Google Scholar 

  58. Rees-Garbutt J, Rightmyer J, Chalkley O, Marucci L, Grierson C (2021) Testing theoretical minimal genomes using whole-cell models. ACS Synth Biol 10(7):1598–1604. https://doi.org/10.1021/acssynbio.0c00515

    Article  CAS  Google Scholar 

  59. Marucci L, Barberis M, Karr J, Ray O, Race PR, de Souza AM et al (2020) Computer-aided whole-cell design: taking a holistic approach by integrating synthetic with systems biology. Front Bioeng Biotechnol 8:942. https://doi.org/10.3389/fbioe.2020.00942

    Article  PubMed Central  Google Scholar 

  60. Landon S, Chalkley O, Breese G, Grierson C, Marucci L (2021) Understanding metabolic flux behaviour in whole-cell model output. Front Mol Biosci 8:732079. https://doi.org/10.3389/fmolb.2021.732079

    Article  CAS  PubMed Central  Google Scholar 

  61. Szigeti B, Roth YD, Sekar JAP, Goldberg AP, Pochiraju SC, Karr JR (2018) A blueprint for human whole-cell modeling. Curr Opin Syst Biol 7:8–15. https://doi.org/10.1016/j.coisb.2017.10.005

    Article  Google Scholar 

  62. Elsemman IE, Rodriguez Prado A, Grigaitis P, Garcia Albornoz M, Harman V, Holman SW et al (2022) Whole-cell modeling in yeast predicts compartment-specific proteome constraints that drive metabolic strategies. Nat Commun 13(1):801. https://doi.org/10.1038/s41467-022-28467-6

    Article  CAS  PubMed Central  Google Scholar 

  63. Wilkinson MD, Dumontier M, Jan Aalbersberg I, Appleton G, Axton M, Baak A et al (2019) Addendum: the FAIR guiding principles for scientific data management and stewardship. Sci Data. 6(1):6. https://doi.org/10.1038/s41597-019-0009-6

    Article  PubMed Central  Google Scholar 

  64. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A et al (2016) The FAIR guiding principles for scientific data management and stewardship. Sci Data 3:160018. https://doi.org/10.1038/sdata.2016.18

    Article  PubMed Central  Google Scholar 

  65. Goldberg AP, Szigeti B, Chew YH, Sekar JA, Roth YD, Karr JR (2018) Emerging whole-cell modeling principles and methods. Curr Opin Biotechnol 51:97–102. https://doi.org/10.1016/j.copbio.2017.12.013

    Article  CAS  Google Scholar 

  66. Gherman IM, Abdallah ZS, Pang W, Gorochowski TE, Grierson CS, Marucci L (2023) Bridging the gap between mechanistic biological models and machine learning surrogates. PLoS Comput Biol 19(4):e1010988. https://doi.org/10.1371/journal.pcbi.1010988

    Article  CAS  PubMed Central  Google Scholar 

  67. Gherman IM, Rees-Garbutt J, Pang W et al (2023) Accelerated design of Escherichia coli genomes with reduced size using a whole-cell model and machine learning surrogate. bioRxiv 2023.10.30.564402. https://doi.org/10.1101/2023.10.30.564402

  68. Thornburg ZR, Bianchi DM, Brier TA, Gilbert BR, Earnest TM, Melo MCR et al (2022) Fundamental behaviors emerge from simulations of a living minimal cell. Cell 185(2):345–60 e28. https://doi.org/10.1016/j.cell.2021.12.025

    Article  CAS  PubMed Central  Google Scholar 

  69. Scholzel C, Blesius V, Ernst G, Dominik A (2021) Characteristics of mathematical modeling languages that facilitate model reuse in systems biology: a software engineering perspective. NPJ Syst Biol Appl. 7(1):27. https://doi.org/10.1038/s41540-021-00182-w

    Article  PubMed Central  Google Scholar 

  70. Del Vecchio D, Dy AJ, Qian Y (2016) Control theory meets synthetic biology. J R Soc Interface 13(120):20160380. https://doi.org/10.1098/rsif.2016.0380

    Article  CAS  PubMed Central  Google Scholar 

  71. Filo M, Chang CH, Khammash M (2023) Biomolecular feedback controllers: from theory to applications. Curr Opin Biotechnol 79:102882. https://doi.org/10.1016/j.copbio.2022.102882

    Article  CAS  Google Scholar 

  72. Briat C, Gupta A, Khammash M (2016) Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks. Cell Syst 2(2):133. https://doi.org/10.1016/j.cels.2016.02.010

    Article  CAS  Google Scholar 

  73. Anastassov S, Filo M, Chang CH, Khammash M (2023) A cybergenetic framework for engineering intein-mediated integral feedback control systems. Nat Commun 14(1):1337. https://doi.org/10.1038/s41467-023-36863-9

    Article  CAS  PubMed Central  Google Scholar 

  74. Filo M, Kumar S, Khammash M (2022) A hierarchy of biomolecular proportional-integral-derivative feedback controllers for robust perfect adaptation and dynamic performance. Nat Commun 13(1):2119. https://doi.org/10.1038/s41467-022-29640-7

    Article  CAS  PubMed Central  Google Scholar 

  75. Annunziata F, Matyjaszkiewicz A, Fiore G, Grierson CS, Marucci L, di Bernardo M et al (2017) An orthogonal multi-input integration system to control gene expression in Escherichia coli. ACS Synth Biol 6(10):1816–1824. https://doi.org/10.1021/acssynbio.7b00109

    Article  CAS  Google Scholar 

  76. Fiore G, Matyjaszkiewicz A, Annunziata F, Grierson C, Savery NJ, Marucci L et al (2017) In-silico analysis and implementation of a multicellular feedback control strategy in a synthetic bacterial consortium. ACS Synth Biol 6(3):507–517. https://doi.org/10.1021/acssynbio.6b00220

    Article  CAS  Google Scholar 

  77. McCarty NS, Ledesma-Amaro R (2019) Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol 37(2):181–197. https://doi.org/10.1016/j.tibtech.2018.11.002

    Article  CAS  PubMed Central  Google Scholar 

  78. Menolascina F, Fiore G, Orabona E, De Stefano L, Ferry M, Hasty J et al (2014) In-vivo real-time control of protein expression from endogenous and synthetic gene networks. PLoS Comput Biol 10(5):e1003625. https://doi.org/10.1371/journal.pcbi.1003625

    Article  CAS  PubMed Central  Google Scholar 

  79. Lugagne JB, Sosa Carrillo S, Kirch M, Kohler A, Batt G, Hersen P (2017) Balancing a genetic toggle switch by real-time feedback control and periodic forcing. Nat Commun 8(1):1671. https://doi.org/10.1038/s41467-017-01498-0

    Article  CAS  PubMed Central  Google Scholar 

  80. Shannon B, Zamora-Chimal CG, Postiglione L, Salzano D, Grierson CS, Marucci L et al (2020) In vivo feedback control of an antithetic molecular-titration motif in Escherichia coli using microfluidics. ACS Synth Biol 9(10):2617–2624. https://doi.org/10.1021/acssynbio.0c00105

    Article  CAS  Google Scholar 

  81. Pedone E, de Cesare I, Zamora-Chimal CG, Haener D, Postiglione L, La Regina A et al (2021) Cheetah: a computational toolkit for cybergenetic control. ACS Synth Biol 10(5):979–989. https://doi.org/10.1021/acssynbio.0c00463

    Article  CAS  Google Scholar 

  82. Postiglione L, Napolitano S, Pedone E, Rocca DL, Aulicino F, Santorelli M et al (2018) Regulation of gene expression and signaling pathway activity in mammalian cells by automated microfluidics feedback control. ACS Synth Biol 7(11):2558–2565. https://doi.org/10.1021/acssynbio.8b00235

    Article  CAS  Google Scholar 

  83. Khazim M, Pedone E, Postiglione L, di Bernardo D, Marucci L (2021) A microfluidic/microscopy-based platform for on-chip controlled gene expression in mammalian cells. Methods Mol Biol 2229:205–219. https://doi.org/10.1007/978-1-0716-1032-9_10

    Article  CAS  Google Scholar 

  84. de Cesare I, Zamora-Chimal CG, Postiglione L, Khazim M, Pedone E, Shannon B et al (2021) ChipSeg: an automatic tool to segment bacterial and mammalian cells cultured in microfluidic devices. ACS Omega 6(4):2473–2476. https://doi.org/10.1021/acsomega.0c03906

    Article  CAS  PubMed Central  Google Scholar 

  85. de Cesare I, Salzano D, di Bernardo M, Renson L, Marucci L (2022) Control-based continuation: a new approach to prototype synthetic gene networks. ACS Synth Biol 11(7):2300–2313. https://doi.org/10.1021/acssynbio.1c00632

    Article  CAS  PubMed Central  Google Scholar 

  86. Smart B, De Cesare I, Renson L, Marucci L (2022) Model predictive control of cancer cellular dynamics: a new strategy for therapy design. Front Control Eng 3(2022). https://doi.org/10.3389/fcteg.2022.935018

Download references

Acknowledgments

LM was funded by the Engineering and Physical Sciences Research Council (EPSRC, EP/S01876X/1) and the Biotechnology and Biological Sciences Research Council (BBSRC, Bristol Centre for Engineering Biology, BB/W013959/1; Breakthrough Award BB/W012235/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Marucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chew, Y.H., Marucci, L. (2024). Mechanistic Model-Driven Biodesign in Mammalian Synthetic Biology. In: Ceroni, F., Polizzi, K. (eds) Mammalian Synthetic Systems. Methods in Molecular Biology, vol 2774. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3718-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3718-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3717-3

  • Online ISBN: 978-1-0716-3718-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics