Skip to main content

Tracking Tau in Neurons: How to Grow, Fix, and Stain Primary Neurons for the Investigation of Tau in All Developmental Stages

  • Protocol
  • First Online:
Tau Protein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2754))

  • 408 Accesses

Abstract

Primary murine neurons are a well-established tool for investigating Tau in the context of neuronal development and neurodegeneration. However, culturing primary neurons is usually time-consuming and requires multiple feeding steps, media exchanges, proprietary media supplements, and/or preparation of complex media. Here, we describe (i) a relatively cheap and easy cell culture procedure for the cultivation of forebrain neurons from embryonic mice (E13.5) based on a commercially available neuronal supplement (NS21), (ii) a protocol for the cultivation of hippocampal and cortical neurons from postnatal (P0-P3) animals, and (iii) basic fixation and immunofluorescence techniques for the staining of neuronal markers and endogenous Tau. We demonstrate a staining technique, which minimizes antibody consumption and allows for fast and convenient processing of samples for immunofluorescence microscopy of endogenous Tau in primary neurons. We also provide a protocol that enables cryopreservation of fixed cells for years without measurable loss of Tau signal. In sum, we provide reliable protocols enabling microscopy-based studies of Tau in primary murine neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101:1371–1378

    Article  CAS  PubMed  Google Scholar 

  2. Bullmann T, Holzer M, Mori H, Arendt T (2009) Pattern of tau isoforms expression during development in vivo. Int J Dev Neurosci 27:591–597. https://doi.org/10.1016/j.ijdevneu.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  3. Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8:393–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bachmann S, Bell M, Klimek J, Zempel H (2021) Differential effects of the six human TAU isoforms: somatic retention of 2N-TAU and increased microtubule number induced by 4R-TAU. Front Neurosci 15:643115. https://doi.org/10.3389/fnins.2021.643115

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zempel H, Dennissen FJA, Kumar Y, Luedtke J, Biernat J, Mandelkow E-M, Mandelkow E (2017) Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture. J Biol Chem 292:12192–12207. https://doi.org/10.1074/jbc.M117.784702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zempel H, Mandelkow E (2014) Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci 37:721–732. https://doi.org/10.1016/j.tins.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  7. Bell M, Bachmann S, Klimek J, Langerscheidt F, Zempel H (2021) Axonal TAU sorting requires the C-terminus of TAU but is independent of ANKG and TRIM46 enrichment at the AIS. Neuroscience 461:155–171. https://doi.org/10.1016/j.neuroscience.2021.01.041

    Article  CAS  PubMed  Google Scholar 

  8. Iwata M, Watanabe S, Yamane A, Miyasaka T, Misonou H (2019) Regulatory mechanisms for the axonal localization of tau protein in neurons. Mol Biol Cell 30:2441–2457. https://doi.org/10.1091/mbc.E19-03-0183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li X, Kumar Y, Zempel H, Mandelkow E-M, Biernat J, Mandelkow E (2011) Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO J 30:4825–4837. https://doi.org/10.1038/emboj.2011.376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schützmann MP, Hasecke F, Bachmann S, Zielinski M, Hänsch S, Schröder GF, Zempel H, Hoyer W (2021) Endo-lysosomal Aβ concentration and pH trigger formation of Aβ oligomers that potently induce Tau missorting. Nat Commun 12:4634. https://doi.org/10.1038/s41467-021-24900-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tjiang N, Zempel H (2022) A mitochondria cluster at the proximal axon initial segment controls axodendritic TAU trafficking in rodent primary and human iPSC-derived neurons. Cell Mol Life Sci 79:120. https://doi.org/10.1007/s00018-022-04150-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zempel H, Luedtke J, Kumar Y, Biernat J, Dawson H, Mandelkow E, Mandelkow E-M (2013) Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J 32:2920–2937. https://doi.org/10.1038/emboj.2013.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen Y, Stevens B, Chang J, Milbrandt J, Barres BA, Hell JW (2008) NS21: re-defined and modified supplement B27 for neuronal cultures. J Neurosci Methods 171:239–247. https://doi.org/10.1016/j.jneumeth.2008.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Taketo M, Schroeder AC, Mobraaten LE, Gunning KB, Hanten G, Fox RR, Roderick TH, Stewart CL, Lilly F, Hansen CT (1991) FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc Natl Acad Sci 88:2065–2069. https://doi.org/10.1073/pnas.88.6.2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zempel H, Thies E, Mandelkow E, Mandelkow E-M (2010) Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30:11938–11950. https://doi.org/10.1523/JNEUROSCI.2357-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bretteville A, Marcouiller F, Julien C, El Khoury NB, Petry FR, Poitras I, Mouginot D, Lévesque G, Hébert SS, Planel E (2012) Hypothermia-induced hyperphosphorylation: a new model to study tau kinase inhibitors. Sci Rep 2:480. https://doi.org/10.1038/srep00480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Jennifer Klimek for her excellent technical support. Animals were provided by CMMC animal facility, CECAD in vivo research facility (both Cologne, Germany), and the Institute for Laboratory Animal Science, RWTH Aachen University, Faculty of Medicine, Aachen, Germany. This work was supported by the Koeln Fortune Program/Faculty of Medicine, University of Cologne, by the Else-Kröner-Fresenius-Stiftung, both to HZ, by a stipend from the Studienstiftung des deutschen Volkes to MBS, and by the “START-program” of the Faculty of Medicine of the RWTH Aachen University to NH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natja Haag or Hans Zempel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Buchholz, S., Bell-Simons, M., Haag, N., Zempel, H. (2024). Tracking Tau in Neurons: How to Grow, Fix, and Stain Primary Neurons for the Investigation of Tau in All Developmental Stages. In: Smet-Nocca, C. (eds) Tau Protein. Methods in Molecular Biology, vol 2754. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3629-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3629-9_29

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3628-2

  • Online ISBN: 978-1-0716-3629-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics