Skip to main content

Behavioral Profiling of Zebrafish (Danio rerio) Larvae: Activity, Anxiety, Avoidance, and Startle Response

  • Protocol
  • First Online:
Teratogenicity Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2753))

Abstract

Apart from morphological, biochemical, and genetic alterations induced by teratogen compounds, there is an increased interest in characterizing behavioral alterations. Behavior is a sensitive parameter that can provide information regarding developmental disruptions non-invasively. Behavioral disturbances interfere with animals’ capacity to cope with the environment, having an impact on the organism’s life. Hereby, behavioral assays consisting of recording larvae in multi-well plates, Petri dishes, or cuvettes and video analysis using adequate software, allowing teratogen screening of behavior, are proposed. Examples of how to evaluate locomotor, anxiety-like and avoidance-like behaviors, and the integrity of sensory-motor functions and learning are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. He J-H, Gao J-M, Huang C-J et al (2014) Zebrafish models for assessing developmental and reproductive toxicity. Neurotoxicol Teratol 42(Supplement C):35–42. https://doi.org/10.1016/j.ntt.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  2. Cottrell JE, Hartung J (2012) Developmental disability in the young and postoperative cognitive dysfunction in the elderly after anesthesia and surgery: do data justify changing clinical practice? Mt Sinai J Med 79(1):75–94. https://doi.org/10.1002/msj.21283

    Article  PubMed  Google Scholar 

  3. Felix LM, Serafim C, Valentim AM et al (2016) Embryonic stage-dependent teratogenicity of ketamine in zebrafish (Danio rerio). Chem Res Toxicol 29(8):1298–1309. https://doi.org/10.1021/acs.chemrestox.6b00122

    Article  CAS  PubMed  Google Scholar 

  4. Félix L, Coimbra AM, Valentim AM et al (2019) Review on the use of zebrafish embryos to study the effects of anesthetics during early development. Crit Rev Toxicol:1–14. https://doi.org/10.1080/10408444.2019.1617236

  5. Sharma S, Coombs S, Patton P et al (2009) The function of wall-following behaviors in the Mexican blind cavefish and a sighted relative, the Mexican tetra (Astyanax). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(3):225–240. https://doi.org/10.1007/s00359-008-0400-9

    Article  PubMed  Google Scholar 

  6. Treit D, Fundytus M (1988) Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31(4):959–962

    Article  CAS  PubMed  Google Scholar 

  7. Schnorr SJ, Steenbergen PJ, Richardson MK et al (2012) Measuring thigmotaxis in larval zebrafish. Behav Brain Res 228(2):367–374. https://doi.org/10.1016/j.bbr.2011.12.016

    Article  CAS  PubMed  Google Scholar 

  8. Fontana BD, Parker MO (2022) The larval diving response (LDR): validation of an automated, high-throughput, ecologically relevant measure of anxiety-related behavior in larval zebrafish (Danio rerio). J Neurosci Methods 381:109706. https://doi.org/10.1016/j.jneumeth.2022.109706

    Article  CAS  PubMed  Google Scholar 

  9. Bishop BH, Spence-Chorman N, Gahtan E (2016) Three-dimensional motion tracking reveals a diving component to visual and auditory escape swims in zebrafish larvae. J Exp Biol 219(Pt 24):3981–3987. https://doi.org/10.1242/jeb.147124

    Article  PubMed  Google Scholar 

  10. Grillon C (2008) Models and mechanisms of anxiety: evidence from startle studies. Psychopharmacology 199(3):421–437. https://doi.org/10.1007/s00213-007-1019-1

    Article  CAS  PubMed  Google Scholar 

  11. Roberts AC, Reichl J, Song MY et al (2011) Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. PLoS One 6(12):e29132. https://doi.org/10.1371/journal.pone.0029132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sztal TE, Ruparelia AA, Williams C et al (2016) Using touch-evoked response and locomotion assays to assess muscle performance and function in zebrafish. J Vis Exp 116. https://doi.org/10.3791/54431

  13. Creton R (2009) Automated analysis of behavior in zebrafish larvae. Behav Brain Res 203(1):127–136. https://doi.org/10.1016/j.bbr.2009.04.030

    Article  PubMed  Google Scholar 

  14. Felix LM, Antunes LM, Coimbra AM et al (2017) Behavioral alterations of zebrafish larvae after early embryonic exposure to ketamine. Psychopharmacology 234(4):549–558. https://doi.org/10.1007/s00213-016-4491-7

    Article  CAS  PubMed  Google Scholar 

  15. Egan RJ, Bergner CL, Hart PC et al (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205(1):38–44. https://doi.org/10.1016/j.bbr.2009.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Buske C, Gerlai R (2014) Diving deeper into zebrafish development of social behavior: analyzing high resolution data. J Neurosci Methods 234:66–72. https://doi.org/10.1016/j.jneumeth.2014.06.019

    Article  PubMed  Google Scholar 

  17. Kalueff AV, Gebhardt M, Stewart AM et al (2013) Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10(1):70–86. https://doi.org/10.1089/zeb.2012.0861

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ali S, Champagne DL, Alia A et al (2011) Large-scale analysis of acute ethanol exposure in zebrafish development: a critical time window and resilience. PLoS One 6(5):e20037. https://doi.org/10.1371/journal.pone.0020037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Norton WHJ (2012) Measuring larval zebrafish behavior: locomotion, thigmotaxis, and startle. In: Kalueff AV, Stewart AM (eds) Zebrafish protocols for neurobehavioral research. Humana Press, Totowa, pp 3–20. https://doi.org/10.1007/978-1-61779-597-8_1

    Chapter  Google Scholar 

  20. Best JD, Berghmans S, Hunt JJFG et al (2007) Non-associative learning in larval zebrafish. Neuropsychopharmacology 33(5):1206–1215. http://www.nature.com/npp/journal/v33/n5/suppinfo/1301489s1.html

    Article  PubMed  Google Scholar 

  21. Clark DT (1981) Visual responses in developing zebrafish (Brachydanio Rerio). University of Oregon, Eugene

    Google Scholar 

  22. Emran F, Rihel J, Adolph AR et al (2007) OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proc Natl Acad Sci U S A 104(48):19126–19131. https://doi.org/10.1073/pnas.0709337104

    Article  PubMed  PubMed Central  Google Scholar 

  23. Strahle U, Scholz S, Geisler R et al (2012) Zebrafish embryos as an alternative to animal experiments-A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33(2):128–132. https://doi.org/10.1016/j.reprotox.2011.06.121

    Article  CAS  PubMed  Google Scholar 

  24. Smith LL, Beggs AH, Gupta VA (2013) Analysis of skeletal muscle defects in larval zebrafish by birefringence and touch-evoke escape response assays. J Vis Exp 82:e50925. https://doi.org/10.3791/50925

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Margarida Monteiro (M.S.), Jorge Ferreira (M.S., Instituto de Investigação e Inovação em Saúde, Porto, Portugal), Luís Félix (PhD, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal), Isabel Silveira (PhD) and Joana Loureiro (PhD), both from the Instituto de Investigação e Inovação em Saúde, Porto, Portugal, for their support in the behavioral tests and analysis. The author also would like to thank Pedro Silva for his support in the Arduino assembly and programming. The first edition of this work was supported by a postdoctoral fellowship SFRH/BPD/103006/2014 issued by Fundação para a Ciência e Tecnologia (FCT), Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Valentim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Valentim, A.M. (2024). Behavioral Profiling of Zebrafish (Danio rerio) Larvae: Activity, Anxiety, Avoidance, and Startle Response. In: Félix, L. (eds) Teratogenicity Testing. Methods in Molecular Biology, vol 2753. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3625-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3625-1_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3624-4

  • Online ISBN: 978-1-0716-3625-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics