Skip to main content

Overcoming Bacteriophage Resistance in Phage Therapy

  • Protocol
  • First Online:
Bacteriophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2738))

Abstract

Antibiotic resistance among pathogenic bacteria is one of the most severe global challenges. It is predicted that over ten million lives will be lost annually by 2050. Phage therapy is a promising alternative to antibiotics. However, the ease of development of phage resistance during therapy is a concern. This review focuses on the possible ways to overcome phage resistance in phage therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chanishvili N (2012) Chapter 1—phage therapy—history from Twort and d’Herelle through soviet experience to current approaches. In: Łobocka M, Szybalski W (eds) . Academic Press, Advances in virus research, pp 3–40

    Google Scholar 

  2. Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114. https://doi.org/10.4161/bact.1.2.14590

    Article  PubMed  PubMed Central  Google Scholar 

  3. Summers WC (2012) The strange history of phage therapy. Bacteriophage 2:130–133. https://doi.org/10.4161/bact.20757

    Article  PubMed  PubMed Central  Google Scholar 

  4. Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage treatment of human infections. Bacteriophage 1:66–85. https://doi.org/10.4161/bact.1.2.15845

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stacey HJ, De Soir S, Jones JD (2022) The safety and efficacy of phage therapy: a systematic review of clinical and safety trials. Antibiotics 11:1340. https://doi.org/10.3390/antibiotics11101340

    Article  PubMed  PubMed Central  Google Scholar 

  6. Uyttebroek S, Chen B, Onsea J, Ruythooren F, Debaveye Y, Devolder D, Spriet I, Depypere M, Wagemans J, Lavigne R, Pirnay J-P, Merabishvili M, De Munter P, Peetermans WE, Dupont L, Van Gerven L, Metsemakers W-J (2022) Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. Lancet Infect Dis 22:e208–e220. https://doi.org/10.1016/S1473-3099(21)00612-5

    Article  CAS  PubMed  Google Scholar 

  7. Strathdee SA, Hatfull GF, Mutalik VK, Schooley RT (2023) Phage therapy: from biological mechanisms to future directions. Cell 186:17–31. https://doi.org/10.1016/j.cell.2022.11.017

    Article  CAS  PubMed  Google Scholar 

  8. Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511. https://doi.org/10.1093/genetics/28.6.491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327. https://doi.org/10.1038/nrmicro2315

    Article  CAS  PubMed  Google Scholar 

  10. Egido JE, Costa AR, Aparicio-Maldonado C, Haas P-J, Brouns SJJ (2022) Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol Rev, 46:fuab048. https://doi.org/10.1093/femsre/fuab048

  11. Gordillo Altamirano FL, Barr JJ (2021) Unlocking the next generation of phage therapy: the key is in the receptors. Curr Opin Biotechnol 68:115–123. https://doi.org/10.1016/j.copbio.2020.10.002

    Article  CAS  PubMed  Google Scholar 

  12. Oliveira PH, Touchon M, Rocha EPC (2014) The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res 42:10618–10631. https://doi.org/10.1093/nar/gku734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lopatina A, Tal N, Sorek R (2020) Abortive infection: bacterial suicide as an antiviral immune strategy. Annu Rev Virol 7:371–384. https://doi.org/10.1146/annurev-virology-011620-040628

    Article  CAS  PubMed  Google Scholar 

  14. Cohen D, Melamed S, Millman A, Shulman G, Oppenheimer-Shaanan Y, Kacen A, Doron S, Amitai G, Sorek R (2019) Cyclic GMP–AMP signalling protects bacteria against viral infection. Nature 574:691–695. https://doi.org/10.1038/s41586-019-1605-5

    Article  CAS  PubMed  Google Scholar 

  15. Kronheim S, Daniel-Ivad M, Duan Z, Hwang S, Wong AI, Mantel I, Nodwell JR, Maxwell KL (2018) A chemical defence against phage infection. Nature 564:283–286. https://doi.org/10.1038/s41586-018-0767-x

    Article  CAS  PubMed  Google Scholar 

  16. Bernheim A, Millman A, Ofir G, Meitav G, Avraham C, Shomar H, Rosenberg MM, Tal N, Melamed S, Amitai G, Sorek R (2021) Prokaryotic viperins produce diverse antiviral molecules. Nature 589:120–124. https://doi.org/10.1038/s41586-020-2762-2

    Article  CAS  PubMed  Google Scholar 

  17. Tal N, Millman A, Stokar-Avihail A, Fedorenko T, Leavitt A, Melamed S, Yirmiya E, Avraham C, Brandis A, Mehlman T, Amitai G, Sorek R (2022) Bacteria deplete deoxynucleotides to defend against bacteriophage infection. Nat Microbiol 7:1200–1209. https://doi.org/10.1038/s41564-022-01158-0

    Article  CAS  PubMed  Google Scholar 

  18. Tesson F, Hervé A, Mordret E, Touchon M, d’Humières C, Cury J, Bernheim A (2022) Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat Commun 13:2561. https://doi.org/10.1038/s41467-022-30269-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dedrick RM, Smith BE, Cristinziano M, Freeman KG, Jacobs-Sera D, Belessis Y, Whitney Brown A, Cohen KA, Davidson RM, van Duin D, Gainey A, Garcia CB, Robert George CR, Haidar G, Ip W, Iredell J, Khatami A, Little JS, Malmivaara K, McMullan BJ, Michalik DE, Moscatelli A, Nick JA, Tupayachi Ortiz MG, Polenakovik HM, Robinson PD, Skurnik M, Solomon DA, Soothill J, Spencer H, Wark P, Worth A, Schooley RT, Benson CA, Hatfull GF (2023) Phage therapy of mycobacterium infections: compassionate use of phages in 20 patients with drug-resistant mycobacterial disease. Clin Infect Dis 76:103–112. https://doi.org/10.1093/cid/ciac453

    Article  CAS  PubMed  Google Scholar 

  20. Smith HW, Huggins MB (1983) Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J Gen Microbiol 129:2659–2675. https://doi.org/10.1099/00221287-129-8-2659

    Article  CAS  PubMed  Google Scholar 

  21. Oechslin F (2018) Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses 10:351. https://doi.org/10.3390/v10070351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suh GA, Lodise TP, Tamma PD, Knisely JM, Alexander J, Aslam S, Barton KD, Bizzell E, Totten KMC, Campbell JL, Chan BK, Cunningham SA, Goodman KE, Greenwood-Quaintance KE, Harris AD, Hesse S, Maresso A, Nussenblatt V, Pride D, Rybak MJ, Sund Z, van Duin D, Van Tyne D, Patel R (2022) Considerations for the use of phage therapy in clinical practice. Antimicrob Agents Chemother 66:e02071–e02021. https://doi.org/10.1128/aac.02071-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. León M, Bastías R (2015) Virulence reduction in bacteriophage resistant bacteria. Front Microbiol 6

    Google Scholar 

  24. Kortright KE, Done RE, Chan BK, Souza V, Turner PE (2022) Selection for phage resistance reduces virulence of Shigella flexneri. Appl Environ Microbiol 88:e01514–e01521. https://doi.org/10.1128/AEM.01514-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fang Q, Feng Y, McNally A, Zong Z (2022) Characterization of phage resistance and phages capable of intestinal decolonization of carbapenem-resistant Klebsiella pneumoniae in mice. Commun Biol 5:1–14. https://doi.org/10.1038/s42003-022-03001-y

    Article  CAS  Google Scholar 

  26. Castledine M, Padfield D, Sierocinski P, Soria Pascual J, Hughes A, Mäkinen L, Friman V-P, Pirnay J-P, Merabishvili M, de Vos D, Buckling A (2022) Parallel evolution of Pseudomonas aeruginosa phage resistance and virulence loss in response to phage treatment in vivo and in vitro. eLife 11:e73679. https://doi.org/10.7554/eLife.73679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hernandez CA, Koskella B (2019) Phage resistance evolution in vitro is not reflective of in vivo outcome in a plant-bacteria-phage system. Evolution 73:2461–2475. https://doi.org/10.1111/evo.13833

    Article  CAS  PubMed  Google Scholar 

  28. Ngassam-Tchamba C, Duprez JN, Fergestad M, De Visscher A, L’Abee-Lund T, De Vliegher S, Wasteson Y, Touzain F, Blanchard Y, Lavigne R, Chanishvili N, Cassart D, Mainil J, Thiry D (2020) In vitro and in vivo assessment of phage therapy against Staphylococcus aureus causing bovine mastitis. J Glob Antimicrob Resist 22:762–770. https://doi.org/10.1016/j.jgar.2020.06.020

    Article  CAS  PubMed  Google Scholar 

  29. Torres-Barceló C, Turner PE, Buckling A (2022) Mitigation of evolved bacterial resistance to phage therapy. Curr Opin Virol 53:101201. https://doi.org/10.1016/j.coviro.2022.101201

    Article  CAS  PubMed  Google Scholar 

  30. Latino L, Midoux C, Hauck Y, Vergnaud G, Pourcel C (2016) Pseudolysogeny and sequential mutations build multiresistance to virulent bacteriophages in Pseudomonas aeruginosa. Microbiol Read Engl 162:748–763. https://doi.org/10.1099/mic.0.000263

    Article  CAS  Google Scholar 

  31. Hall AR, De Vos D, Friman V-P, Pirnay J-P, Buckling A (2012) Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl Environ Microbiol 78:5646–5652. https://doi.org/10.1128/AEM.00757-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wright RCT, Friman V-P, Smith MCM, Brockhurst MA (2019) Resistance evolution against phage combinations depends on the timing and order of exposure. mBio 10:e01652–e01619. https://doi.org/10.1128/mBio.01652-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Łusiak-Szelachowska M, Międzybrodzki R, Drulis-Kawa Z, Cater K, Knežević P, Winogradow C, Amaro K, Jończyk-Matysiak E, Weber-Dąbrowska B, Rękas J, Górski A (2022) Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far. J Biomed Sci 29:23. https://doi.org/10.1186/s12929-022-00806-1

    Article  PubMed  PubMed Central  Google Scholar 

  34. Diallo K, Dublanchet A (2022) Benefits of combined phage–antibiotic therapy for the control of antibiotic-resistant bacteria: a literature review. Antibiotics 11:839. https://doi.org/10.3390/antibiotics11070839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Comeau AM, Tétart F, Trojet SN, Prère M-F, Krisch HM (2007) Phage-antibiotic synergy (PAS): β-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS One 2:e799. https://doi.org/10.1371/journal.pone.0000799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kamal F, Dennis JJ (2015) Burkholderia cepacia complex phage-antibiotic synergy (PAS): antibiotics stimulate lytic phage activity. Appl Environ Microbiol 81:1132–1138. https://doi.org/10.1128/AEM.02850-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chatterjee A, Johnson CN, Luong P, Hullahalli K, McBride SW, Schubert AM, Palmer KL, Carlson PE, Duerkop BA (2019) Bacteriophage resistance alters antibiotic-mediated intestinal expansion of enterococci. Infect Immun 87:e00085–e00019. https://doi.org/10.1128/IAI.00085-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE (2016) Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep 6:26717. https://doi.org/10.1038/srep26717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rohde C, Resch G, Pirnay J-P, Blasdel BG, Debarbieux L, Gelman D, Górski A, Hazan R, Huys I, Kakabadze E, Łobocka M, Maestri A, de Almeida GM, Makalatia K, Malik DJ, Mašlaňová I, Merabishvili M, Pantucek R, Rose T, Štveráková D, Van Raemdonck H, Verbeken G, Chanishvili N (2018) Expert opinion on three phage therapy related topics: bacterial phage resistance, phage training and prophages in bacterial production strains. Viruses 10:178. https://doi.org/10.3390/v10040178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Borin JM, Avrani S, Barrick JE, Petrie KL, Meyer JR (2021) Coevolutionary phage training leads to greater bacterial suppression and delays the evolution of phage resistance. Proc Natl Acad Sci 118:e2104592118. https://doi.org/10.1073/pnas.2104592118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peters TL, Song Y, Bryan DW, Hudson LK, Denes TG (2020) Mutant and recombinant phages selected from in vitro coevolution conditions overcome phage-resistant listeria monocytogenes. Appl Environ Microbiol 86:e02138–e02120. https://doi.org/10.1128/AEM.02138-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Friman V-P, Soanes-Brown D, Sierocinski P, Molin S, Johansen HK, Merabishvili M, Pirnay J-P, De Vos D, Buckling A (2016) Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa cystic fibrosis bacterial isolates. J Evol Biol 29:188–198. https://doi.org/10.1111/jeb.12774

    Article  PubMed  Google Scholar 

  43. Betts A, Vasse M, Kaltz O, Hochberg ME (2013) Back to the future: evolving bacteriophages to increase their effectiveness against the pathogen Pseudomonas aeruginosa PAO1. Evol Appl 6:1054–1063. https://doi.org/10.1111/eva.12085

    Article  PubMed  PubMed Central  Google Scholar 

  44. Monferrer E, Domingo-Calap P (2019) Virus-host coevolution as a tool for controlling bacterial resistance to phage therapy. J Biotechnol Biomed 2:96–104

    Article  Google Scholar 

  45. Laanto E, Mäkelä K, Hoikkala V, Ravantti JJ, Sundberg L-R (2020) Adapting a phage to combat phage resistance. Antibiotics 9:291. https://doi.org/10.3390/antibiotics9060291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen Y, Batra H, Dong J, Chen C, Rao VB, Tao P (2019) Genetic engineering of bacteriophages against infectious diseases. Front Microbiol 10

    Google Scholar 

  47. Kilcher S, Loessner MJ (2019) Engineering bacteriophages as versatile biologics. Trends Microbiol 27:355–367. https://doi.org/10.1016/j.tim.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  48. Marinelli LJ, Hatfull GF, Piuri M (2012) Recombineering. Bacteriophage 2:5–14. https://doi.org/10.4161/bact.18778

    Article  PubMed  PubMed Central  Google Scholar 

  49. Marinelli LJ, Piuri M, Swigoňová Z, Balachandran A, Oldfield LM, van Kessel JC, Hatfull GF (2008) BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PLoS One 3:e3957. https://doi.org/10.1371/journal.pone.0003957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nafissi N, Slavcev R (2014) Bacteriophage recombination systems and biotechnical applications. Appl Microbiol Biotechnol 98:2841–2851. https://doi.org/10.1007/s00253-014-5512-2

    Article  CAS  PubMed  Google Scholar 

  51. Fehér T, Karcagi I, Blattner FR, Pósfai G (2012) Bacteriophage recombineering in the lytic state using the lambda red recombinases. Microb Biotechnol 5:466–476. https://doi.org/10.1111/j.1751-7915.2011.00292.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kiro R, Shitrit D, Qimron U (2014) Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system. RNA Biol 11:42–44. https://doi.org/10.4161/rna.27766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP, Venclovas Č, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R, van der Oost J, Barrangou R, Koonin EV (2020) Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83. https://doi.org/10.1038/s41579-019-0299-x

    Article  CAS  PubMed  Google Scholar 

  54. Smith HO, Hutchison CA, Pfannkoch C, Venter JC (2003) Generating a synthetic genome by whole genome assembly: φX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci 100:15440–15445. https://doi.org/10.1073/pnas.2237126100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elina Laanto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Laanto, E. (2024). Overcoming Bacteriophage Resistance in Phage Therapy. In: Tumban, E. (eds) Bacteriophages. Methods in Molecular Biology, vol 2738. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3549-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3549-0_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3548-3

  • Online ISBN: 978-1-0716-3549-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics