Skip to main content

Use of Localized Reconstruction to Visualize the Shigella Phage Sf6 Tail Apparatus

  • Protocol
  • First Online:
Bacteriophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2738))

Abstract

Cryogenic electron microscopy (cryo-EM) single-particle analysis has revolutionized the structural analysis of icosahedral viruses, including tailed bacteriophages. In recent years, localized (or focused) reconstruction has emerged as a powerful data analysis method to capture symmetry mismatches and resolve asymmetric features in icosahedral viruses. Here, we describe the methods used to reconstruct the 2.65-MDa tail apparatus of the Shigella phage Sf6, a representative member of the Podoviridae superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMullan G, Faruqi AR, Henderson R (2016) Direct electron detectors. Methods Enzymol 579:1–17. https://doi.org/10.1016/bs.mie.2016.05.056

    Article  CAS  PubMed  Google Scholar 

  2. Parent KN, Schrad JR, Cingolani G (2018) Breaking symmetry in viral icosahedral capsids as seen through the lenses of x-ray crystallography and cryo-electron microscopy. Viruses 10(2). https://doi.org/10.3390/v10020067

  3. Abrishami V, Ilca SL, Gomez-Blanco J, Rissanen I, de la Rosa-Trevin JM, Reddy VS, Carazo JM, Huiskonen JT (2021) Localized reconstruction in Scipion expedites the analysis of symmetry mismatches in cryo-EM data. Prog Biophys Mol Biol 160:43–52. https://doi.org/10.1016/j.pbiomolbio.2020.05.004

    Article  CAS  PubMed  Google Scholar 

  4. Ilca SL, Kotecha A, Sun X, Poranen MM, Stuart DI, Huiskonen JT (2015) Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes. Nat Commun 6:8843. https://doi.org/10.1038/ncomms9843

    Article  CAS  PubMed  Google Scholar 

  5. Guo F, Liu Z, Vago F, Ren Y, Wu W, Wright ET, Serwer P, Jiang W (2013) Visualization of uncorrelated, tandem symmetry mismatches in the internal genome packaging apparatus of bacteriophage T7. Proc Natl Acad Sci U S A 110(17):6811–6816. https://doi.org/10.1073/pnas.1215563110

    Article  PubMed  PubMed Central  Google Scholar 

  6. Morais MC, Tao Y, Olson NH, Grimes S, Jardine PJ, Anderson DL, Baker TS, Rossmann MG (2001) Cryoelectron-microscopy image reconstruction of symmetry mismatches in bacteriophage phi29. J Struct Biol 135(1):38–46. https://doi.org/10.1006/jsbi.2001.4379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Scheres SH (2016) Processing of structurally heterogeneous cryo-EM data in RELION. Methods Enzymol 579:125–157. https://doi.org/10.1016/bs.mie.2016.04.012

    Article  CAS  PubMed  Google Scholar 

  8. Grigorieff N (2016) Frealign: an exploratory tool for single-particle cryo-EM. Methods Enzymol 579:191–226. https://doi.org/10.1016/bs.mie.2016.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakane T, Kimanius D, Lindahl E, Scheres SH (2018) Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. Elife 7. https://doi.org/10.7554/eLife.36861

  10. Li F, Hou CD, Yang R, Whitehead R 3rd, Teschke CM, Cingolani G (2022) High-resolution cryo-EM structure of the Shigella virus Sf6 genome delivery tail machine. Sci Adv 8(49):eadc9641. https://doi.org/10.1126/sciadv.adc9641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bhardwaj A, Molineux IJ, Casjens SR, Cingolani G (2011) Atomic structure of bacteriophage Sf6 tail needle knob. J Biol Chem 286(35):30867–30877. https://doi.org/10.1074/jbc.M111.260877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Olia AS, Casjens S, Cingolani G (2007) Structure of phage P22 cell envelope-penetrating needle. Nat Struct Mol Biol 14(12):1221–1226

    Article  CAS  PubMed  Google Scholar 

  13. Kimanius D, Forsberg BO, Scheres SH, Lindahl E (2016) Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. Elife 5. https://doi.org/10.7554/eLife.18722

  14. Zivanov J, Oton J, Ke Z, von Kugelgen A, Pyle E, Qu K, Morado D, Castano-Diez D, Zanetti G, Bharat TAM, Briggs JAG, Scheres SHW (2022) A Bayesian approach to single-particle electron cryo-tomography in RELION-4.0. Elife 11. https://doi.org/10.7554/eLife.83724

  15. Jimenez-Moreno A, Del Cano L, Martinez M, Ramirez-Aportela E, Cuervo A, Melero R, Sanchez-Garcia R, Strelak D, Fernandez-Gimenez E, de Isidro-Gomez FP, Herreros D, Conesa P, Fonseca Y, Maluenda D, Jimenez de la Morena J, Macias JR, Losana P, Marabini R, Carazo JM, Sorzano COS (2021) Cryo-EM and single-particle analysis with scipion. J Vis Exp 171. https://doi.org/10.3791/62261

  16. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  17. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE (2021) UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30(1):70–82. https://doi.org/10.1002/pro.3943

    Article  CAS  PubMed  Google Scholar 

  18. Janson G, Paiardini A (2021) PyMod 3: a complete suite for structural bioinformatics in PyMOL. Bioinformatics 37(10):1471–1472. https://doi.org/10.1093/bioinformatics/btaa849

    Article  CAS  PubMed  Google Scholar 

  19. Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI, Hintze B, Hung LW, Jain S, McCoy AJ, Moriarty NW, Oeffner RD, Poon BK, Prisant MG, Read RJ, Richardson JS, Richardson DC, Sammito MD, Sobolev OV, Stockwell DH, Terwilliger TC, Urzhumtsev AG, Videau LL, Williams CJ, Adams PD (2019) Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 75(Pt 10):861–877. https://doi.org/10.1107/s2059798319011471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallographica Section D 66(4):486–501. https://doi.org/10.1107/S0907444910007493

    Article  CAS  Google Scholar 

  21. Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14(4):331–332. https://doi.org/10.1038/nmeth.4193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rohou A, Grigorieff N (2015) CTFFIND4: fast and accurate defocus estimation from electron micrographs. J Struct Biol 192(2):216–221. https://doi.org/10.1016/j.jsb.2015.08.008

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wagner T, Merino F, Stabrin M, Moriya T, Antoni C, Apelbaum A, Hagel P, Sitsel O, Raisch T, Prumbaum D, Quentin D, Roderer D, Tacke S, Siebolds B, Schubert E, Shaikh TR, Lill P, Gatsogiannis C, Raunser S (2019) SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun Biol 2:218. https://doi.org/10.1038/s42003-019-0437-z

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bepler T, Morin A, Rapp M, Brasch J, Shapiro L, Noble AJ, Berger B (2019) Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat Methods 16(11):1153–1160. https://doi.org/10.1038/s41592-019-0575-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116(1):190–199

    Article  CAS  PubMed  Google Scholar 

  26. Terwilliger TC, Sobolev OV, Afonine PV, Adams PD (2018) Automated map sharpening by maximization of detail and connectivity. Acta Crystallogr D Struct Biol 74(Pt 6):545–559. https://doi.org/10.1107/S2059798318004655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Skolnick J, Gao M, Zhou H, Singh S (2021) AlphaFold 2: why it works and its implications for understanding the relationships of protein sequence, structure, and function. J Chem Inf Model 61(10):4827–4831. https://doi.org/10.1021/acs.jcim.1c01114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Afonine PV, Poon BK, Read RJ, Sobolev OV, Terwilliger TC, Urzhumtsev A, Adams PD (2018) Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D Struct Biol 74(Pt 6):531–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institutes of Health grants R01 GM100888, R35 GM140733, and S10 OD030457 to G.C. This research was partly supported by the National Cancer Institute’s National Cryo-EM Facility at the Frederick National Laboratory for Cancer Research under contract HSSN261200800001E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino Cingolani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hou, CF.D., Li, F., Iglesias, S., Cingolani, G. (2024). Use of Localized Reconstruction to Visualize the Shigella Phage Sf6 Tail Apparatus. In: Tumban, E. (eds) Bacteriophages. Methods in Molecular Biology, vol 2738. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3549-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3549-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3548-3

  • Online ISBN: 978-1-0716-3549-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics