Skip to main content

High-Speed Video Microscopy of Ependymal Cilia in Brain Organotypic and Cell Culture Models

  • Protocol
  • First Online:
Cilia

Abstract

The wall of the ventricular system within the neuraxis is lined almost entirely by E1 ependymal cells, each of which projects multiple motile cilia from their apical surface into the cerebrospinal fluid (CSF). This specialized layer of E1 cells constitutes the border between the CSF and the brain interstitial fluid (BIF), and by controlling influx and efflux across the CSF to BIF interface, it is increasingly recognized to play an integral role in modulating and maintaining the brain microenvironment. The motile cilia have been shown to be responsive to changes in the CSF microenvironment, and while the physiological role of this mechanism remains incompletely understood, manipulating this control mechanism may influence the brain microenvironment potentially opening a new frontier in therapeutic intervention.

In this paper, we describe our techniques for preparing organotypic slices from the murine brain parenchyma and establishing cell cultures of multiciliated ependymal cells from mouse and rat neonatal brain tissue. Our methodology generates a functional readout of ciliary function, specifically high-speed video microscopy (HSVM) enables the quantification of ciliary beat frequency (CBF), and characterization of ciliary beat pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sarnat HB (1995) Ependymal reactions to injury. A review. J Neuropathol Exp Neurol 54(1):1–15

    Article  CAS  PubMed  Google Scholar 

  2. Hirst RA, Rutman A, Sikand K et al (2000) Effect of pneumolysin on rat brain ciliary function: comparison of brain slices with cultured ependymal cells. Pediatr Res 47(3):381

    Article  CAS  PubMed  Google Scholar 

  3. O’Callaghan CL, Sikand K, Rutman A et al (2008) The effect of viscous loading on brain ependymal cilia. Neurosci Lett 439(1):56–60

    Article  PubMed  Google Scholar 

  4. O’Callaghan C, Sikand K, Rutman A (1999) Respiratory and brain ependymal ciliary function. Pediatr Res 46(6):704–704

    Article  PubMed  Google Scholar 

  5. O’Callaghan C, Sikand K, Chilvers MA (2012) Analysis of ependymal ciliary beat pattern and beat frequency using high speed imaging: comparison with the photomultiplier and photodiode methods. Cilia 1(1):1–7

    Google Scholar 

  6. Chilvers MA, O’Callaghan C (2000) Analysis of ciliary beat pattern and beat frequency using digital high speed imaging: comparison with the photomultiplier and photodiode methods. Thorax 55(4):314–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fadaee-Shohada MJ, Hirst RA, Rutman A et al (2010) The behaviour of both Listeria monocytogenes and rat ciliated ependymal cells is altered during their co-culture. PLoS One 5(5):e10450

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mönkkönen KS, Hakumäki JM, Hirst RA et al (2007) Intracerebroventricular antisense knockdown of Gαi2 results in ciliary stasis and ventricular dilatation in the rat. BMC Neurosci 8(1):1–15

    Article  Google Scholar 

  9. Robson EA, Dixon L, Causon L et al (2020) Hydrocephalus and diffuse choroid plexus hyperplasia in primary ciliary dyskinesia-related MCIDAS mutation. Neurol Genet 6(4):Article e482

    Article  PubMed  Google Scholar 

  10. Boon M, Wallmeier J, Ma L et al (2014) MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun 5(1):1–8

    Article  Google Scholar 

  11. Dawes W (2022) Secondary brain injury following neonatal intraventricular haemorrhage: the role of the ciliated ependyma. Front Pediatr 10:887606

    Article  PubMed  PubMed Central  Google Scholar 

  12. Veening JG, Barendregt HP (2010) The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review. Cerebrospinal Fluid Res 7(1):1. https://doi.org/10.1186/1743-8454-7-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sawamoto K, Wichterle H, Gonzalez-Perez O et al (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311(5761):629–632

    Article  CAS  PubMed  Google Scholar 

  14. Shook BA, Lennington JB, Acabchuk RL et al (2014) Ventriculomegaly associated with ependymal gliosis and declines in barrier integrity in the aging human and mouse brain. Aging Cell 13(2):340–350

    Article  CAS  PubMed  Google Scholar 

  15. Conductier G, Brau F, Viola A et al (2013) Melanin-concentrating hormone regulates beat frequency of ependymal cilia and ventricular volume. Nat Neurosci 16(7):845–847

    Article  CAS  PubMed  Google Scholar 

  16. Spassky N (2013) Motile cilia and brain function: ependymal motile cilia development, organization, function and their associated pathologies. In: Cilia and nervous system development and function. Springer, pp 193–207

    Chapter  Google Scholar 

  17. Nguyen T, Chin WC, O’Brien JA et al (2001) Intracellular pathways regulating ciliary beating of rat brain ependymal cells. J Physiol 531(1):131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Genzen JR, Yang D, Ravid K et al (2009) Activation of adenosine A2B receptors enhances ciliary beat frequency in mouse lateral ventricle ependymal cells. Cerebrospinal Fluid Res 6(1):1–11

    Article  Google Scholar 

  19. O’Callaghan C, Achaval M, Forsythe I et al (1995) Brain and respiratory cilia: the effect of temperature. Neonatology 68(6):394–397

    Article  Google Scholar 

  20. Lee DDH, Cardinale D, Terakosolphan W et al (2021) Fluticasone particles bind to motile respiratory cilia: a mechanism for enhanced lung and systemic exposure? J Aerosol Med Pulm Drug Deliv 34(3):181–188

    Article  CAS  PubMed  Google Scholar 

  21. O’Callaghan C, Sikand K (2012) The effect of halothane and pentobarbital sodium on brain ependymal cilia. cilia 1(1):1–7

    Article  Google Scholar 

  22. Lagah S, Tan I-L, Radhakrishnan P et al (2014) RHPS4 G-quadruplex ligand induces anti-proliferative effects in brain tumor cells. PLoS One 9(1):e86187

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mnkkönen K, Hirst RA, Laitinen JT et al (2008) PACAP27 regulates ciliary function in primary cultures of rat brain ependymal cells. Neuropeptides 42(5–6):633–640

    Article  Google Scholar 

  24. Mohammed B, Mitchell T, Andrew P et al (1999) The effect of the pneumococcal toxin, pneumolysin on brain ependymal cilia. Microb Pathog 27(5):303–309

    Article  CAS  PubMed  Google Scholar 

  25. Hirst RA, Sikand KS, Rutman A et al (2000) Relative roles of pneumolysin and hydrogen peroxide from Streptococcus pneumoniae in inhibition of ependymal ciliary beat frequency. Infect Immun 68(3):1557–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hirst RA, Rutman A, Sikand K et al (2000) Effect of pneumolysin on rat brain ciliary function: comparison of brain slices with cultured ependymal cells. Pediatr Res 47(3):381–384

    Article  CAS  PubMed  Google Scholar 

  27. Hirst RA, Mohammed BJ, Mitchell TJ et al (2004) Streptococcus pneumoniae-induced inhibition of rat ependymal cilia is attenuated by antipneumolysin antibody. Infect Immun 72(11):6694–6698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hirst RA, Gosai B, Rutman A et al (2008) Streptococcus pneumoniae deficient in pneumolysin or autolysin has reduced virulence in meningitis. J Infect Dis 197(5):744–751

    Article  PubMed  Google Scholar 

  29. Hirst RA, Rutman A, O’Callaghan C (2009) Hydrogen peroxide at a concentration used during neurosurgery disrupts ciliary function and causes extensive damage to the ciliated ependyma of the brain. Childs Nerv Syst 25(5):559–561

    Article  PubMed  Google Scholar 

  30. Smith CM, Djakow J, Free RC et al (2012) ciliaFA: a research tool for automated, high-throughput measurement of ciliary beat frequency using freely available software. Cilia 1(1):1–7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Dawes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dawes, W.J. et al. (2024). High-Speed Video Microscopy of Ependymal Cilia in Brain Organotypic and Cell Culture Models. In: Mennella, V. (eds) Cilia. Methods in Molecular Biology, vol 2725. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3507-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3507-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3506-3

  • Online ISBN: 978-1-0716-3507-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics