Skip to main content

Quantitation of Oncologic Image Features for Radiomic Analyses in PET

  • Protocol
  • First Online:
Positron Emission Tomography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2729))

  • 575 Accesses

Abstract

Radiomics is an emerging and exciting field of study involving the extraction of many quantitative features from radiographic images. Positron emission tomography (PET) images are used in cancer diagnosis and staging. Utilizing radiomics on PET images can better quantify the spatial relationships between image voxels and generate more consistent and accurate results for diagnosis, prognosis, treatment, etc. This chapter gives the general steps a researcher would take to extract PET radiomic features from medical images and properly develop models to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446

    Article  Google Scholar 

  2. Cook GJ, Azad G, Owczarczyk K et al (2018) Challenges and promises of PET radiomics. Int J Radiat Oncol Biol Phys 102(4):1083–1089

    Article  Google Scholar 

  3. Wang H-M, Cheng N-M, Lee L-Y et al (2016) Heterogeneity of 18F-FDG PET combined with expression of EGFR may improve the prognostic stratification of advanced oropharyngeal carcinoma. Int J Cancer 138(3):731–738

    Article  CAS  Google Scholar 

  4. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577

    Article  Google Scholar 

  5. Parekh V, Jacobs MA (2016) Radiomics: a new application from established techniques. Expert Rev Precis Med Drug Dev 1(2):207–226

    Article  Google Scholar 

  6. Grootjans W, de Geus-Oei L-F, Troost EG et al (2015) PET in the management of locally advanced and metastatic NSCLC. Nat Rev Clin Oncol 12(7):395

    Article  Google Scholar 

  7. Gupta T, Jain S, Agarwal JP et al (2010) Diagnostic performance of response assessment FDG-PET/CT in patients with head and neck squamous cell carcinoma treated with high-precision definitive (chemo) radiation. Radiother Oncol 97(2):194–199

    Article  Google Scholar 

  8. Higgins KA, Hoang JK, Roach MC et al (2012) Analysis of pretreatment FDG-PET SUV parameters in head-and-neck cancer: tumor SUVmean has superior prognostic value. Int J Radiat Oncol Biol Phys 82(2):548–553

    Article  Google Scholar 

  9. Benz MR, Herrmann K, Walter F et al (2011) 18F-FDG PET/CT for monitoring treatment responses to the epidermal growth factor receptor inhibitor erlotinib. J Nucl Med 52(11):1684–1689

    Article  CAS  Google Scholar 

  10. Takahashi R, Hirata H, Tachibana I et al (2012) Early [18F]fluorodeoxyglucose positron emission tomography at two days of gefitinib treatment predicts clinical outcome in patients with adenocarcinoma of the lung. Clin Cancer Res 18(1):220–228

    Article  CAS  Google Scholar 

  11. van Gool MH, Aukema TS, Sinaasappel M et al (2016) Tumor heterogeneity on 18F-FDG-PET/CT for response monitoring in non-small cell lung cancer treated with erlotinib. J Thorac Dis 8(3):E200

    Article  Google Scholar 

  12. Aukema TS, Kappers I, Olmos RAV et al (2010) Is 18F-FDG PET/CT useful for the early prediction of histopathologic response to neoadjuvant erlotinib in patients with non–small cell lung cancer? J Nucl Med 51(9):1344–1348

    Article  CAS  Google Scholar 

  13. Kumar V, Nath K, Berman CG et al (2013) Variance of standardized uptake values for FDG-PET/CT greater in clinical practice than under ideal study settings. Clin Nucl Med 38(3):175

    Article  Google Scholar 

  14. Reuzé S, Schernberg A, Orlhac F et al (2018) Radiomics in nuclear medicine applied to radiation therapy: methods, pitfalls, and challenges. Int J Radiat Oncol Biol Phys 102(4):1117–1142

    Article  Google Scholar 

  15. Bogowicz M, Vuong D, Huellner MW et al (2019) CT radiomics and PET radiomics: ready for clinical implementation? Q J Nucl Med Mol Imaging 63:355–370

    Article  Google Scholar 

  16. Lohmann P, Kocher M, Ruge MI et al (2010) PET/MRI radiomics in patients with brain metastases. Front Neurol 11:1

    Article  Google Scholar 

  17. Rizzo S, Botta F, Raimondi S et al (2018) Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp 2(1):1–8

    Article  Google Scholar 

  18. van Velden FH, Kramer GM, Frings V et al (2016) Repeatability of radiomic features in non-small-cell lung cancer [18F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol 18(5):788–795

    Article  Google Scholar 

  19. Traverso A, Wee L, Dekker A et al (2018) Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys 102(4):1143–1158

    Article  Google Scholar 

  20. Bianconi F, Palumbo I, Spanu A et al (2020) PET/CT radiomics in lung cancer: an overview. Appl Sci 10(5):1718

    Article  CAS  Google Scholar 

  21. O’Connor JP, Rose CJ, Waterton JC et al (2015) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 21(2):249–257

    Article  Google Scholar 

  22. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621

    Article  Google Scholar 

  23. Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graph Image Process 4:172–179

    Article  Google Scholar 

  24. Amadasun M, King R (1989) Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern 19(5):1264–1274

    Article  Google Scholar 

  25. Dettori L, Semler L (2007) A comparison of wavelet, ridgelet, and curvelet-based texture classification algorithms in computed tomography. Comput Biol Med 37(4):486–498

    Article  Google Scholar 

  26. Castellano G, Bonilha L, Li L et al (2004) Texture analysis of medical images. Clin Radiol 59(12):1061–1069

    Article  CAS  Google Scholar 

  27. Pentland AP (1984) Fractal-based description of natural scenes. IEEE Trans Pattern Anal Mach Intell PAMI-6(6):661–674

    Article  Google Scholar 

  28. Peyret R, Bouridane A, Khelifi F et al (2018) Automatic classification of colorectal and prostatic histologic tumor images using multiscale multispectral local binary pattern texture features and stacked generalization. Neurocomputing 275:83–93

    Article  Google Scholar 

  29. Bianconi F, Fravolini ML, Palumbo I et al (2019) Shape and texture analysis of radiomic data for computer-assisted diagnosis and prognostication: an overview. In: International conference on design, simulation, manufacturing: the innovation exchange. Springer, pp 3–14

    Google Scholar 

  30. Ulrich EJ, Menda Y, Ponto LLB et al (2019) FLT PET radiomics for response prediction to chemoradiation therapy in head and neck squamous cell cancer. Tomography 5(1):161–169

    Article  Google Scholar 

  31. Tibshirani R (1997) The LASSO method for variable selection in the Cox model. Stat Med 16(4):385–395

    Article  CAS  Google Scholar 

  32. Delzell DAP, Peter T, Smith M et al (2019) Machine learning and feature selection methods for disease classification with application to lung cancer screening image data. Front Oncol 9:1393

    Article  Google Scholar 

  33. Remeseiro B, Bolon-Canedo V (2019) A review of feature selection methods in medical applications. Comput Biol Med 112:103375

    Article  CAS  Google Scholar 

  34. Mattonen SA, Davidzon GA, Benson J et al (2019) Bone marrow and tumor radiomics at 18F-FDG PET/CT: impact on outcome prediction in non-small cell lung cancer. Radiology 293(2):451–459

    Article  Google Scholar 

  35. Huang S-y, Franc BL, Harnish RJ et al (2018) Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis. NPJ Breast Cancer 4(1):1–13

    Article  Google Scholar 

  36. Van Der Heijden F, Duin RP, De Ridder D et al (2015) Classification, parameter estimation and state estimation: an engineering approach using MATLAB. Wiley

    Google Scholar 

  37. Deng L, Yu D (2014) Deep learning: methods and applications. Found Trends Signal Process 7(3–4):197–387

    Article  Google Scholar 

  38. Kaissis G, Braren R (2019) Pancreatic cancer detection and characterization—state of the art cross-sectional imaging and imaging data analysis. Transl Gastroenterol Hepatol 4:35

    Article  Google Scholar 

  39. Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341

    Article  Google Scholar 

  40. Van Griethuysen JJ, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107

    Article  Google Scholar 

  41. Kitajima K, Doi H, Kuribayashi K et al (2017) Prognostic value of pretreatment volume-based quantitative 18F-FDG PET/CT parameters in patients with malignant pleural mesothelioma. Eur J Radiol 86:176–183

    Article  Google Scholar 

  42. Stolzenburg A, Lückerath K, Samnick S et al (2018) Prognostic value of [18F]FDG-PET/CT in multiple myeloma patients before and after allogeneic hematopoietic cell transplantation. Eur J Nucl Med Mol Imaging 45(10):1694–1704

    Article  CAS  Google Scholar 

  43. Liu J, Dong M, Sun X et al (2016) Prognostic value of 18F-FDG PET/CT in surgical non-small cell lung cancer: a meta-analysis. PLoS One 11(1):e0146195

    Article  Google Scholar 

  44. Albano D, Familiari D, Gentile R et al (2018) Clinical and prognostic value of 18F-FDG-PET/CT in restaging of pancreatic cancer. Nucl Med Commun 39(8):741–746

    Article  Google Scholar 

  45. Lambin P, Leijenaar RT, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762

    Article  Google Scholar 

  46. Crivelli P, Ledda RE, Parascandolo N et al (2018) A new challenge for radiologists: radiomics in breast cancer. Biomed Res Int 2018:6120703

    Article  Google Scholar 

  47. Qiu Q, Duan J, Yin Y (2020) Radiomics in radiotherapy: applications and future challenges. Precis Radiat Oncol 4(1):29–33

    Article  Google Scholar 

  48. Rieke N, Hancox J, Li W et al (2020) The future of digital health with federated learning. NPJ Digit Med 3(1):1–7

    Article  Google Scholar 

  49. Kaissis GA, Makowski MR, Rückert D et al (2020) Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell 2(6):305–311

    Article  Google Scholar 

  50. Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338

    Article  Google Scholar 

  51. Collins GS, Reitsma JB, Altman DG et al (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) the TRIPOD statement. Circulation 131(2):211–219

    Article  Google Scholar 

  52. Fave X, Zhang L, Yang J et al (2016) Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Transl Cancer Res 5(4):349–363

    Article  CAS  Google Scholar 

  53. Selvaraju RR, Cogswell M, Das A et al (2017) Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE international conference on computer vision (ICCV). IEEE, pp 618–626

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber L. Simpson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Williams, T.L., Gonen, M., Wray, R., Do, R.K.G., Simpson, A.L. (2024). Quantitation of Oncologic Image Features for Radiomic Analyses in PET. In: Witney, T.H., Shuhendler, A.J. (eds) Positron Emission Tomography. Methods in Molecular Biology, vol 2729. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3499-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3499-8_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3498-1

  • Online ISBN: 978-1-0716-3499-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics