Skip to main content

Structural Characterization of Nucleic Acid Nanoparticles Using SAXS and SAXS-Driven MD

  • Protocol
  • First Online:
RNA Nanostructures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2709))

Abstract

Structural characterization of nucleic acid nanoparticles (NANPs) in solution is critical for validation of correct assembly and for quantifying the size, shape, and flexibility of the construct. Small-angle X-ray scattering (SAXS) is a well-established method to obtain structural information of particles in solution. Here, we present a procedure for the preparation of NANPs for SAXS. This procedure outlines the steps for a successful SAXS experiment and the use of SAXS-driven molecular dynamics to generate an ensemble of structures that best explain the data observed in solution. We use an RNA NANP as an example, so the reader can prepare the sample for data collection, analyze the results, and perform SAXS-driven MD on similar NANPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afonin KA, Dobrovolskaia MA, Church G, Bathe M (2020) Opportunities, barriers, and a strategy for overcoming translational challenges to therapeutic nucleic acid nanotechnology. ACS Nano 14(8):9221–9227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Afonin KA, Dobrovolskaia MA, Ke W, Grodzinski P, Bathe M (2022) Critical review of nucleic acid nanotechnology to identify gaps and inform a strategy for accelerated clinical translation. Adv Drug Deliv Rev 181:114081

    Article  CAS  PubMed  Google Scholar 

  3. Afonin KA, Viard M, Koyfman AY, Martins AN, Kasprzak WK, Panigaj M et al (2014) Multifunctional RNA nanoparticles. Nano Lett 14(10):5662–5671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saito RF, Rangel MC, Halman JR, Chandler M, de Sousa Andrade LN, Odete-Bustos S et al (2021) Simultaneous silencing of lysophosphatidylcholine acyltransferases 1-4 by nucleic acid nanoparticles (NANPs) improves radiation response of melanoma cells. Nanomedicine 36:102418

    Article  CAS  PubMed  Google Scholar 

  5. Rackley L, Stewart JM, Salotti J, Krokhotin A, Shah A, Halman JR et al (2018) RNA fibers as optimized Nanoscaffolds for siRNA coordination and reduced immunological recognition. Adv Funct Mater 28(48):1805959

    Article  PubMed  PubMed Central  Google Scholar 

  6. Afonin KA, Kasprzak WK, Bindewald E, Kireeva M, Viard M, Kashlev M et al (2014) In silico design and enzymatic synthesis of functional RNA nanoparticles. Acc Chem Res 47(6):1731–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chandler M, Jain S, Halman J, Hong E, Dobrovolskaia MA, Zakharov AV et al (2022) Artificial immune cell, AI-cell, a new tool to predict interferon production by peripheral blood monocytes in response to nucleic acid nanoparticles. Small 18:e2204941

    Article  PubMed  Google Scholar 

  8. Afonin KA, Dobrovolskaia MA, Ke W, Grodzinski P, Bathe M (2021) Critical review of nucleic acid nanotechnology to identify gaps and inform a strategy for accelerated clinical translation. Adv Drug Deliv Rev 181:114081

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dobrovolskaia MA, Afonin KA (2021) Use of human peripheral blood mononuclear cells to define immunological properties of nucleic acid nanoparticles. In: Therapeutic RNA nanotechnology. Jenny Stanford Publishing, pp 1091–1136

    Google Scholar 

  10. Chandler M, Rolband L, Johnson MB, Shi D, Avila YI, Cedrone E et al (2022) Expanding structural space for immunomodulatory nucleic acid nanoparticles via spatial arrangement of their therapeutic moieties. Adv Funct Mater 32(43):2205581

    Article  CAS  PubMed  Google Scholar 

  11. Hong E, Halman JR, Shah AB, Khisamutdinov EF, Dobrovolskaia MA, Afonin KA (2018) Structure and composition define Immunorecognition of nucleic acid nanoparticles. Nano Lett 18(7):4309–4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Svergun DI, Koch MHJ (2003) Small-angle scattering studies of biological macromolecules in solution. Rep Prog Phys 66(10):1735–1782

    Article  CAS  Google Scholar 

  13. Graziano V, McGrath WJ, Yang L, Mangel WF (2006) SARS CoV main proteinase: the monomer-dimer equilibrium dissociation constant. Biochemistry 45(49):14632–14641

    Article  CAS  PubMed  Google Scholar 

  14. Pilz I, Glatter O, Kratky O (1979) Small-angle X-ray scattering. Methods Enzymol 61:148–249

    Article  CAS  PubMed  Google Scholar 

  15. Oliver RC, Rolband LA, Hutchinson-Lundy AM, Afonin KA, Krueger JK (2019) Small-angle scattering as a structural probe for nucleic acid nanoparticles (NANPs) in a dynamic solution environment. Nanomaterials 9(5):681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Trewhella J, Duff AP, Durand D, Gabel F, Guss JM, Hendrickson WA et al (2017) 2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update. Acta Crystallogr Sect D Struct Biol 73(9):710–728

    Article  CAS  Google Scholar 

  17. Jacques DA, Trewhella J (2010) Small-angle scattering for structural biology—expanding the frontier while avoiding the pitfalls. Protein Sci 19(4):642–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kikhney AG, Svergun DI (2015) A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett 589(19):2570–2577

    Article  CAS  PubMed  Google Scholar 

  19. Rambo RP, Tainer JA (2013) Super-resolution in solution X-ray scattering and its applications to structural systems biology. Annu Rev Biophys 42(1):415–441

    Article  CAS  PubMed  Google Scholar 

  20. Weiel M, Reinartz I, Schug A (2019) Rapid interpretation of small-angle X-ray scattering data. PLoS Comput Biol 15(3):e1006900

    Article  PubMed  PubMed Central  Google Scholar 

  21. Grabow WW, Zakrevsky P, Afonin KA, Chworos A, Shapiro BA, Jaeger L (2011) Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett 11(2):878–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Afonin KA, Kireeva M, Grabow WW, Kashlev M, Jaeger L, Shapiro BA (2012) Co-transcriptional assembly of chemically modified RNA nanoparticles functionalized with siRNAs. Nano Lett 12(10):5192–5195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Afonin KA, Grabow WW, Walker FM, Bindewald E, Dobrovolskaia MA, Shapiro BA et al (2011) Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat Protoc 6(12):2022–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Afonin KA, Viard M, Tedbury P, Bindewald E, Parlea L, Howington M et al (2016) The use of minimal RNA toeholds to trigger the activation of multiple functionalities. Nano Lett 16(3):1746–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sajja S, Chandler M, Fedorov D, Kasprzak WK, Lushnikov A, Viard M et al (2018) Dynamic behavior of RNA nanoparticles analyzed by AFM on a mica/air interface. Langmuir 34(49):15099–15108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang L, Antonelli S, Chodankar S, Byrnes J, Lazo E, Qian K (2020) Solution scattering at the life science X-ray scattering (LiX) beamline. J Synchrotron Radiat 27(3):804–812

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang L, Lazo E, Byrnes J, Chodankar S, Antonelli S, Rakitin M (2021) Tools for supporting solution scattering during the COVID-19 pandemic. J Synchrotron Radiat 28(4):1237–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang L (2013) Using an in-vacuum CCD detector for simultaneous small-and wide-angle scattering at beamline X9. J Synchrotron Radiat 20(2):211–218

    Article  CAS  PubMed  Google Scholar 

  29. Chen P-c, Hub JS (2015) Interpretation of solution x-ray scattering by explicit-solvent molecular dynamics. Biophys J 108(10):2573–2584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen Y-L, He W, Kirmizialtin S, Pollack L (2022) Insights into the structural stability of major groove RNA triplexes by WAXS-guided MD simulations. Cell Rep Phys Sci 3(7):100971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen P-C, Hub JS (2014) Validating solution ensembles from molecular dynamics simulation by wide-angle X-ray scattering data. Biophys J 107(2):435–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI et al (2021) UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30(1):70–82

    Article  CAS  PubMed  Google Scholar 

  33. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 27–28

    Article  Google Scholar 

  34. Turner P (2005) XMGRACE, version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton

    Google Scholar 

  35. Chatzimagas L, Hub JS (2022) Structure and ensemble refinement against SAXS data: combining MD simulations with Bayesian inference or with the maximum entropy principle. bioRxiv. https://doi.org/10.1101/2022.04.05.487171

  36. Franke D, Petoukhov M, Konarev P, Panjkovich A, Tuukkanen A, Mertens H et al (2017) ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J Appl Crystallogr 50(4):1212–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hopkins JB, Gillilan RE, Skou S (2017) BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J Appl Crystallogr 50(5):1545–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The LIX beamline is part of the Center for BioMolecular Structure (CBMS), which is primarily supported by the National Institutes of Health, by the National Institute of General Medical Sciences (NIGMS) through a P30 Grant (P30GM133893), and by the DOE Office of Biological and Environmental Research (KP1605010). LIX also received additional support from NIH Grant S10 OD012331. As part of NSLS-II, a national user facility at Brookhaven National Laboratory, work performed at the CBMS is supported in part by the US Department of Energy, Office of Science, Office of Basic Energy Sciences Program under contract number DE-SC0012704. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35GM139587 (to K.A.A.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors would like to thank Dr. Robert Sweet for insightful comments and suggestions for this chapter. KC is supported by Brookhaven National Laboratory LDRD (21-038). The authors would like to thank Dr. Hubertus JJ van Dam for setting up GROMACS-SWAXS on the institute cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Byrnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Byrnes, J. et al. (2023). Structural Characterization of Nucleic Acid Nanoparticles Using SAXS and SAXS-Driven MD. In: Afonin, K.A. (eds) RNA Nanostructures. Methods in Molecular Biology, vol 2709. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3417-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3417-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3416-5

  • Online ISBN: 978-1-0716-3417-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics