Skip to main content

Optical Coherence Tomography: Imaging Visual System Structures in Mice

  • Protocol
  • First Online:
Retinal Ganglion Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2708))

  • 565 Accesses

Abstract

Optical coherence tomography (OCT) enables micron-scale resolution of structural anatomy, thereby making OCT a valuable tool for addressing ophthalmologic and neurologic inquiries. Although the murine eye and its structures are very small and offers challenges for OCT imaging, OCT can be used to monitor retinal layer thickness in healthy and diseased retinas in murine lines in vivo longitudinally. Thus, OCT can provide insights into disease severity and treatment efficacy. This chapter describes the use of OCT as a powerful non-invasive imaging technology for high-resolution retinal imaging and retinal thickness quantification in rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Segura F, Sanchez-Cano A, Jarabo S et al (2015) Assessment of visual and chromatic functions in a rodent model of retinal degeneration. Invest Ophthalmol Vis Sci 56:6275–6283

    Article  PubMed  Google Scholar 

  2. Augustin M, Wechdorn M, Pfeiffenberger U et al (2018) In vivo characterization of spontaneous retinal neovascularization in the mouse eye by multifunctional optical coherence tomography. Invest Ophthalmol Vis Sci 59:2054–2068

    Article  CAS  PubMed  Google Scholar 

  3. Carpenter CL, Kim AY, Kashani AH (2018) Normative retinal thicknesses in common animal models of eye disease using spectral domain optical coherence tomography. Adv Exp Med Biol 1074:157–166

    Article  CAS  PubMed  Google Scholar 

  4. Dietrich M, Helling N, Hilla A et al (2018) Early alpha-lipoic acid therapy protects from degeneration of the inner retinal layers and vision loss in an experimental autoimmune encephalomyelitis-optic neuritis model. J Neuroinflammation 15:71

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tode J, Richert E, Koinzer S et al (2018) Thermal stimulation of the retina reduces Bruch’s membrane thickness in age related macular degeneration mouse models. Transl Vis Sci Technol 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dietrich M, Hecker C, Hilla A et al (2019) Using optical coherence tomography and optokinetic response as structural and functional visual system readouts in mice and rats. J Vis Exp JoVE 143

    Google Scholar 

  7. Jagodzinska J, Sarzi E, Cavalier M et al (2017) Optical coherence tomography: imaging mouse retinal ganglion cells in vivo. J Vis Exp JoVE 127

    Google Scholar 

  8. Liu X, Liu Y, Jin H et al (2021) Reactive fibroblasts in response to optic nerve crush injury. Mol Neurobiol 58:1392–1403

    Article  CAS  PubMed  Google Scholar 

  9. Garvin MK, Abramoff MD, Wu X et al (2009) Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans Med Imaging 28:1436–1447

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dufour PA, Ceklic L, Abdillahi H et al (2013) Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints. IEEE Trans Med Imaging 32:531–543

    Article  PubMed  Google Scholar 

  11. Ma R, Liu Y, Tao Y et al (2021) Deep learning-based retinal nerve fiber layer thickness measurement of murine eyes. Transl Vis Sci Technol 10:21

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The Bascom Palmer Eye Institute was supported by NIH Center Core Grant P30EY014801 and a Research to Prevent Blindness Unrestricted Grant. R.K. Lee is partially supported by the Walter G. Ross Foundation. This work was partly supported by the Gutierrez Family Research Fund, the Camiener Family Glaucoma Research Fund, and the National Natural Science Foundation of China (No. 82201170 to X.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard K. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, X., Liu, Y., Lee, R.K. (2023). Optical Coherence Tomography: Imaging Visual System Structures in Mice. In: Mead, B. (eds) Retinal Ganglion Cells. Methods in Molecular Biology, vol 2708. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3409-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3409-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3408-0

  • Online ISBN: 978-1-0716-3409-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics