Skip to main content

Holographic Optogenetic Activation of Neurons Eliciting Locomotion in Head-Embedded Larval Zebrafish

  • Protocol
  • First Online:
Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2707))

Abstract

Understanding how motor circuits are organized and recruited in order to perform complex behavior is an essential question of neuroscience. Here we present an optogenetic protocol on larval zebrafish that allows spatial selective control of neuronal activity within a genetically defined population. We combine holographic illumination with the use of effective opsin transgenic lines, alongside high-speed behavioral monitoring to dissect the motor circuits of the larval zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grillner S, El Manira A (2020) Current principles of motor control, with special reference to vertebrate locomotion. Physiol Rev 100:271–320. https://doi.org/10.1152/physrev.00015.2019

    Article  PubMed  Google Scholar 

  2. Grätsch S, Büschges A, Dubuc R (2019) Descending control of locomotor circuits. Curr Opin Physio 8:94–98. https://doi.org/10.1016/j.cophys.2019.01.007

    Article  Google Scholar 

  3. Wyart C, Del Bene F (2011) Let there be light: zebrafish neurobiology and the optogenetic revolution. Rev Neurosci 22:121. https://doi.org/10.1515/rns.2011.013

    Article  CAS  PubMed  Google Scholar 

  4. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268. https://doi.org/10.1038/nn1525

    Article  CAS  PubMed  Google Scholar 

  5. Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 18:1213–1225. https://doi.org/10.1038/nn.4091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kawakami K, Patton EE, Orger M (2016) Zebrafish: methods and protocols. Springer, New York

    Book  Google Scholar 

  7. Arrenberg AB, Del Bene F, Baier H (2009) Optical control of zebrafish behaviour with halorhodopsin. Proc Natl Acad Sci 106:17968–17973. https://doi.org/10.1073/pnas.0906252106

    Article  PubMed  PubMed Central  Google Scholar 

  8. Douglass AD, Kraves S, Deisseroth K, Schier AF, Engert F (2008) Escape behaviour elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr Biol 18:1133–1137. https://doi.org/10.1016/j.cub.2008.06.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wyart C, Bene FD, Warp E, Scott EK, Trauner D, Baier H, Isacoff EY (2009) Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461:407–410. https://doi.org/10.1038/nature08323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Warp E, Agarwal G, Wyart C, Friedmann D, Oldfield CS, Conner A, Del Bene F, Arrenberg AB, Baier H, Isacoff EY (2012) Emergence of patterned activity in the developing zebrafish spinal cord. Curr Biol 22:93–102. https://doi.org/10.1016/j.cub.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  11. Hubbard JM, Böhm UL, Prendergast A, Tseng P-EB, Newman M, Stokes C, Wyart C (2016) Intraspinal sensory neurons provide powerful inhibition to motor circuits ensuring postural control during locomotion. Curr Biol 26:2841–2853. https://doi.org/10.1016/j.cub.2016.08.026

    Article  CAS  PubMed  Google Scholar 

  12. Rickgauer JP, Tank DW (2009) Two-photon excitation of channelrhodopsin-2 at saturation. Proc Natl Acad Sci 106:15025–15030. https://doi.org/10.1073/pnas.0907084106

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ronzitti E, Ventalon C, Canepari M, Forget BC, Papagiakoumou E, Emiliani V (2017) Recent advances in patterned photostimulation for optogenetics. J Opt 19:113001. https://doi.org/10.1088/2040-8986/aa8299

    Article  CAS  Google Scholar 

  14. Papagiakoumou E, Ronzitti E, Emiliani V (2020) Scanless two-photon excitation with temporal focusing. Nat Methods 17:571–581. https://doi.org/10.1038/s41592-020-0795-y

    Article  CAS  PubMed  Google Scholar 

  15. Accanto N, Molinier C, Tanese D, Ronzitti E, Newman ZL, Wyart C, Isacoff E, Papagiakoumou E, Emiliani V (2018) Multiplexed temporally focused light shaping for high-resolution multi-cell targeting. Optica 5:1478. https://doi.org/10.1364/OPTICA.5.001478

    Article  CAS  Google Scholar 

  16. Chen I-W, Papagiakoumou E, Emiliani V (2018) Towards circuit optogenetics. Curr Opin Neurobiol 50:179–189. https://doi.org/10.1016/j.conb.2018.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lutz C, Otis TS, DeSars V, Charpak S, DiGregorio DA, Emiliani V (2008) Holographic photolysis of caged neurotransmitters. Nat Methods 5:821–827. https://doi.org/10.1038/nmeth.1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stroh A (2018) Optogenetics: a roadmap. Springer, New York

    Book  Google Scholar 

  19. Antinucci P, Dumitrescu A, Deleuze C, Morley HJ, Leung K, Hagley T, Kubo F, Baier H, Bianco IH, Wyart C (2020) A calibrated optogenetic toolbox of stable zebrafish opsin lines. eLife 9:e54937. https://doi.org/10.7554/eLife.54937

  20. Vladimirov N, Wang C, Höckendorf B, Pujala A, Tanimoto M, Mu Y, Yang C-T, Wittenbach JD, Freeman J, Preibisch S, Koyama M, Keller PJ, Ahrens MB (2018) Brain-wide circuit interrogation at the cellular level guided by online analysis of neuronal function. Nat Methods 15:1117–1125. https://doi.org/10.1038/s41592-018-0221-x

    Article  CAS  PubMed  Google Scholar 

  21. Scott EK (2009) The Gal4/UAS toolbox in zebrafish: new approaches for defining behavioural circuits. J Neurochem 110:441–456. https://doi.org/10.1111/j.1471-4159.2009.06161.x

    Article  CAS  PubMed  Google Scholar 

  22. Goll MG, Anderson R, Stainier DYR, Spradling AC, Halpern ME (2009) Transcriptional silencing and reactivation in transgenic zebrafish. Genetics 182:747–755. https://doi.org/10.1534/genetics.109.102079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goll MG, Halpern ME (2011) DNA Methylation in Zebrafish. In: Progress in molecular biology and translational science. Elsevier, pp 193–218

    Google Scholar 

  24. Hernandez O, Papagiakoumou E, Tanese D, Fidelin K, Wyart C, Emiliani V (2016) Three-dimensional spatiotemporal focusing of holographic patterns. Nat Commun 7:11928. https://doi.org/10.1038/ncomms11928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Friedman JM (2021) How the discovery of microbial opsins led to the development of optogenetics. Cell 184:5687–5689. https://doi.org/10.1016/j.cell.2021.10.008

    Article  CAS  PubMed  Google Scholar 

  26. Sridharan S, Gajowa M, Ogando MB, Jagadisan U, Abdeladim L, Sadahiro M, Bounds H, Hendricks WD, Tayler I, Gopakumar K, Antón Oldenburg I, Brohawn SG, Adesnik H (2021) High performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks. Neuroscience 110(7):1139–1155

    Google Scholar 

  27. Drobizhev M, Makarov NS, Tillo SE, Hughes TE, Rebane A (2011) Two-photon absorption properties of fluorescent proteins. Nat Methods 8:393–399. https://doi.org/10.1038/nmeth.1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen I-W, Ronzitti E, Lee BR, Daigle TL, Dalkara D, Zeng H, Emiliani V, Papagiakoumou E (2019) In vivo sub-millisecond two-photon optogenetics with temporally focused patterned light. J Neurosci:1785–1718. https://doi.org/10.1523/JNEUROSCI.1785-18.2018

  29. Hernandez O, Guillon M, Papagiakoumou E, Emiliani V (2014) Zero-order suppression for two-photon holographic excitation. Opt Lett 39:5953. https://doi.org/10.1364/OL.39.005953

    Article  PubMed  Google Scholar 

  30. McRaven C, Zhang L, Yang C-T, Ahrens MB, Emiliani V, Koyama M (2020) High-throughput cellular-resolution synaptic connectivity mapping in vivo with concurrent two-photon optogenetics and volumetric Ca2 imaging. Neuroscience. https://doi.org/10.1101/2020.02.21.959650

  31. Mardinly AR, Oldenburg IA, Pégard NC, Sridharan S, Lyall EH, Chesnov K, Brohawn SG, Waller L, Adesnik H (2018) Precise multimodal optical control of neural ensemble activity. Nat Neurosci 21:881–893. https://doi.org/10.1038/s41593-018-0139-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ronzitti E, Conti R, Zampini V, Tanese D, Foust AJ, Klapoetke N, Boyden ES, Papagiakoumou E, Emiliani V (2017) Submillisecond optogenetic control of neuronal firing with two-photon holographic photoactivation of chronos. J Neurosci 37:10679–10689. https://doi.org/10.1523/JNEUROSCI.1246-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Förster D, Dal Maschio M, Laurell E, Baier H (2017) An optogenetic toolbox for unbiased discovery of functionally connected cells in neural circuits. Nat Commun 8:116. https://doi.org/10.1038/s41467-017-00160-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frøland Steindal IA, Beale AD, Yamamoto Y, Whitmore D (2018) Development of the Astyanax mexicanus circadian clock and non-visual light responses. Dev Biol 441:345–354. https://doi.org/10.1016/j.ydbio.2018.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Friedmann D, Hoagland A, Berlin S, Isacoff EY (2015) A spinal opsin controls early neural activity and drives a behavioural light response. Curr Biol 25:69–74. https://doi.org/10.1016/j.cub.2014.10.055

    Article  CAS  PubMed  Google Scholar 

  36. Shemesh OA, Tanese D, Zampini V, Linghu C, Piatkevich K, Ronzitti E, Papagiakoumou E, Boyden ES, Emiliani V (2017) Temporally precise single-cell-resolution optogenetics. Nat Neurosci 20:1796–1806. https://doi.org/10.1038/s41593-017-0018-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Martin Carbó-Tano for the development of the behavioral monitoring protocol including the 3D printed claw and the enucleation protocol that leads to Fig. 2. in this chapter and Mathilde Lapoix for her advice in the implementation of the behaviour protocol and the members of the Wyart Lab for feedback and discussion. We also thank Dimitrii Tanese, Nelson Rebola and Joana Guedes for proofreading of the manuscript. We thank Ben Shababo and Osnath Assayag from Intelligent Imaging for the technical support on using Phasor. This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement #813457 as well as Fondation pour la Recherche Médicale (FRM, grant #EQU202003010612) and the Fondation Bettencourt-Schueller (FBS, grant #Don0063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Wyart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jia, X., Wyart, C. (2024). Holographic Optogenetic Activation of Neurons Eliciting Locomotion in Head-Embedded Larval Zebrafish. In: Amatruda, J.F., Houart, C., Kawakami, K., Poss, K.D. (eds) Zebrafish. Methods in Molecular Biology, vol 2707. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3401-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3401-1_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3400-4

  • Online ISBN: 978-1-0716-3401-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics