Skip to main content

Liquid Biopsy in Coronary Heart Disease

  • Protocol
  • First Online:
Liquid Biopsies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2695))

Abstract

Cardiovascular disease (CVD) remains the major cause of morbidity and mortality globally. Accumulating evidence indicates that coronary heart disease (CHD) contributes to the majority of cardiovascular deaths. With the development of precision medicine, the diagnosis and treatment of coronary heart disease are becoming more refined and individualized. Molecular diagnosis technology and individualized treatment are gradually applied to the clinical diagnosis and treatment of CHD. It is great significance to seek sensitive biological indicators to help early diagnosis and improve prognosis of CHD. Liquid biopsy is a minimally invasive technique, which is widely used to detect molecular biomarkers of tumors without invasive biopsy. Compared with the field of oncology, it is not easy to get the diseased tissue in CVD, especially CHD. Therefore, the idea of “fluid biopsy” is very attractive, and its progress may provide new and useful noninvasive indicators for CHD. By analyzing circulating cells or their products in blood, saliva, and urine samples, we can investigate the molecular changes that occur in each patient at a specific point in time, thus continuously monitoring the evolution of CHD. For example, the assessment of cell-free DNA (cfDNA) levels may help predict the severity of acute myocardial infarction and diagnose heart transplant rejection. Moreover, the unmethylated FAM101A gene may specifically track the cfDNA derived from cardiomyocyte death, which provides a powerful diagnostic biomarker for apoptosis during ischemia. In addition, the changes of plasma circulating miR-92 levels may predict the occurrence of acute coronary syndrome (ACS) onset in patients with diabetes. Liquid biopsy can reflect the disease state through patients’ body fluids and may noninvasively provide dynamic and rich molecular information related to CHD. It has great application potential in early warning and auxiliary diagnosis, real-time monitoring of curative effect, medication guidance and exploration of drug resistance mechanism, prognosis judgment, and risk classification of CHD. This chapter will review the latest progress of liquid biopsy in accurate diagnosis and treatment of CHD, meanwhile explore the application status and clinical prospect of liquid biopsy in CHD, in order to improve the importance of precision medicine and personalized treatment in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Tsao CW (2020) Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation 141:e1–e458

    Article  Google Scholar 

  2. 中国心血管健康与疾病报告2020. 心肺血管病杂志. 2021;40:5

    Google Scholar 

  3. Fazmin IT, Achercouk Z, Edling CE, Said A, Jeevaratnam K (2020) Circulating microRNA as a biomarker for coronary artery disease. Biomol Ther 10:1354

    CAS  Google Scholar 

  4. Eggers KM, Lindahl B, Carrero JJ, Evans M, Szummer K, Jernberg T (2017) Cardiac troponins and their prognostic importance in patients with suspected acute coronary syndrome and renal dysfunction. Clin Chem 63:1409–1417

    Article  CAS  PubMed  Google Scholar 

  5. Fröhlich GM, Meier P, White SK, Yellon DM, Hausenloy DJ (2013) Myocardial reperfusion injury: looking beyond primary PCI. Eur Heart J 34:1714–1722

    Article  PubMed  Google Scholar 

  6. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R, Rosenfeld N (2017) Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17:223–238

    Article  CAS  PubMed  Google Scholar 

  7. Huang C, Neupane YR, Lim XC, Shekhani R, Czarny B, Wacker MG, Pastorin G, Wang JW (2021) Extracellular vesicles in cardiovascular disease. Adv Clin Chem 103:47–95

    Article  CAS  PubMed  Google Scholar 

  8. Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S, Emanueli C, Gasecka A, Hendrix A, Hill AF, Lacroix R, Lee Y, van Leeuwen TG, Mackman N, Mäger I, Nolan JP, van der Pol E, Pegtel DM, Sahoo S, Siljander PRM, Sturk G, de Wever O, Nieuwland R (2017) Methodological guidelines to study extracellular vesicles. Circ Res 120:1632–1648

    Article  CAS  PubMed  Google Scholar 

  9. Farinacci M, Krahn T, Dinh W, Volk HD, Düngen HD, Wagner J, Konen T, von Ahsen O (2019) Circulating endothelial cells as biomarker for cardiovascular diseases. Res Pract Thromb Haemost 3:49–58

    Article  CAS  PubMed  Google Scholar 

  10. Hosen MR, Goody PR, Zietzer A, Nickenig G, Jansen F (2020) MicroRNAs as master regulators of atherosclerosis: from pathogenesis to novel therapeutic options. Antioxid Redox Signal 33:621–644

    Article  CAS  PubMed  Google Scholar 

  11. Perakis S, Speicher MR (2017) Emerging concepts in liquid biopsies. BMC Med 15:75

    Article  PubMed  PubMed Central  Google Scholar 

  12. Leopold JA, Loscalzo J (2018) Emerging role of precision medicine in cardiovascular disease. Circ Res 122:1302–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leon-Mimila P, Wang J, Huertas-Vazquez A (2019) Relevance of multi-omics studies in cardiovascular diseases. Front Cardiovasc Med 6:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sara JDS, Prasad M, Zhang M, Lennon RJ, Herrmann J, Lerman LO, Lerman A (2017) High-sensitivity C-reactive protein is an independent marker of abnormal coronary vasoreactivity in patients with non-obstructive coronary artery disease. Am Heart J 190:1–11

    Article  CAS  PubMed  Google Scholar 

  15. Samman Tahhan A, Sandesara P, Hayek SS, Hammadah M, Alkhoder A, Kelli HM, Topel M, O’Neal WT, Ghasemzadeh N, Ko YA, Gafeer MM, Abdelhadi N, Choudhary F, Patel K, Beshiri A, Murtagh G, Kim J, Wilson P, Shaw L, Vaccarino V, Epstein SE, Sperling L, Quyyumi AA (2018) High-sensitivity troponin I levels and coronary artery disease severity, progression, and long-term outcomes. J Am Heart Assoc 7:e007914

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ibrahim NE, Januzzi JL Jr, Magaret CA, Gaggin HK, Rhyne RF, Gandhi PU, Kelly N, Simon ML, Motiwala SR, Belcher AM, van Kimmenade RRJ (2017) A clinical and biomarker scoring system to predict the presence of obstructive coronary artery disease. J Am Coll Cardiol 69:1147–1156

    Article  PubMed  Google Scholar 

  17. Benincasa G, Mansueto G, Napoli C (2019) Fluid-based assays and precision medicine of cardiovascular diseases: the ‘hope’ for Pandora’s box? J Clin Pathol 72:785–799

    Article  CAS  PubMed  Google Scholar 

  18. Schiano C, Rienzo M, Casamassimi A, Soricelli A, Napoli C (2017) Splicing regulators in endothelial cell differentiation. J Cardiovasc Med (Hagerstown) 18:742–749

    Article  CAS  PubMed  Google Scholar 

  19. Ziaee S, Boroumand MA, Salehi R, Sadeghian S, Hosseindokht M, Sharifi M (2018) Non-invasive diagnosis of early-onset coronary artery disease based on cell type-specific gene expression analyses. Biomed Pharmacother 108:1115–1122

    Article  CAS  PubMed  Google Scholar 

  20. Yang SW, Hennessy RR, Khosla S, Lennon R, Loeffler D, Sun T, Liu Z, Park KH, Wang FL, Lerman LO, Lerman A (2017) Circulating osteogenic endothelial progenitor cell counts: new biomarker for the severity of coronary artery disease. Int J Cardiol 227:833–839

    Article  PubMed  Google Scholar 

  21. Xu MG, Men LN, Zhao CY, Zhao X, Wang YX, Meng XC, Shen DR, Meng BY, Zhang Q, Wang T (2010) The number and function of circulating endothelial progenitor cells in patients with Kawasaki disease. Eur J Pediatr 169:289–296

    Article  PubMed  Google Scholar 

  22. Zhang B, Li D, Liu G, Tan W, Zhang G, Liao J (2021) Impaired activity of circulating EPCs and endothelial function are associated with increased Syntax score in patients with coronary artery disease. Mol Med Rep 23:321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shim Y, Nam MH, Hyuk SW, Yoon SY, Song JM (2015) Concurrent hypermulticolor monitoring of CD31, CD34, CD45 and CD146 endothelial progenitor cell markers for acute myocardial infarction. Anal Chim Acta 853:501–507

    Article  CAS  PubMed  Google Scholar 

  24. Padfield GJ, Tura-Ceide O, Freyer E, Barclay GR, Turner M, Newby DE, Mills NL (2013) Endothelial progenitor cells, atheroma burden and clinical outcome in patients with coronary artery disease. Heart 99:791–798

    Article  PubMed  Google Scholar 

  25. Li X, Qiu J, Pan M, Zheng D, Su Y, Wei M, Kong X, Sun W, Zhu J (2015) Correlation between congenital heart disease complicated with pulmonary artery hypertension and circulating endothelial cells as well as endothelin-1. Int J Clin Exp Pathol 8:10743–10751

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Watt J, Kennedy S, Ahmed N, Hayhurst J, McClure JD, Berry C, Wadsworth RM, Oldroyd KG (2016) The relationship between oxidised LDL, endothelial progenitor cells and coronary endothelial function in patients with CHD. Open Heart 3:e000342

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sun K, Jiang P, Chan KC, Wong J, Cheng YK, Liang RH, Chan WK, Ma ES, Chan SL, Cheng SH, Chan RW, Tong YK, Ng SS, Wong RS, Hui DS, Leung TN, Leung TY, Lai PB, Chiu RW, Lo YM (2015) Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci U S A 112:E5503–E5512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665

    CAS  PubMed  Google Scholar 

  29. Polina IA, Ilatovskaya DV, DeLeon-Pennell KY (2020) Cell free DNA as a diagnostic and prognostic marker for cardiovascular diseases. Clin Chim Acta 503:145–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fukuda D, Nishimoto S, Aini K, Tanaka A, Nishiguchi T, Kim-Kaneyama JR, Lei XF, Masuda K, Naruto T, Tanaka K, Higashikuni Y, Hirata Y, Yagi S, Kusunose K, Yamada H, Soeki T, Imoto I, Akasaka T, Shimabukuro M, Sata M (2019) Toll-like receptor 9 plays a pivotal role in angiotensin II-induced atherosclerosis. J Am Heart Assoc 8:e010860

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tian Y, Charles EJ, Yan Z, Wu D, French BA, Kron IL, Yang Z (2019) The myocardial infarct-exacerbating effect of cell-free DNA is mediated by the high-mobility group box 1-receptor for advanced glycation end products-toll-like receptor 9 pathway. J Thorac Cardiovasc Surg 157:2256–2269.e3

    Article  CAS  PubMed  Google Scholar 

  32. Yolcu M, Dogan A, Kurtoglu N, Hancer VS, Gürbüzel M (2020) New indicator of cellular ischemia in coronary slow-flow phenomenon: cell-free DNA. Turk Kardiyol Dern Ars 48:558–565

    PubMed  Google Scholar 

  33. Xie J, Yang J, Hu P (2018) Correlations of circulating cell-free DNA with clinical manifestations in acute myocardial infarction. Am J Med Sci 356:121–129

    Article  PubMed  Google Scholar 

  34. Chang CP, Chia RH, Wu TL, Tsao KC, Sun CF, Wu JT (2003) Elevated cell-free serum DNA detected in patients with myocardial infarction. Clin Chim Acta 327:95–101

    Article  CAS  PubMed  Google Scholar 

  35. Antonatos D, Patsilinakos S, Spanodimos S, Korkonikitas P, Tsigas D (2006) Cell-free DNA levels as a prognostic marker in acute myocardial infarction. Ann N Y Acad Sci 1075:278–281

    Article  CAS  PubMed  Google Scholar 

  36. Cui M, Fan M, Jing R, Wang H, Qin J, Sheng H, Wang Y, Wu X, Zhang L, Zhu J, Ju S (2013) Cell-free circulating DNA: a new biomarker for the acute coronary syndrome. Cardiology 124:76–84

    Article  CAS  PubMed  Google Scholar 

  37. Destouni A, Vrettou C, Antonatos D, Chouliaras G, Traeger-Synodinos J, Patsilinakos S, Kitsiou-Tzeli S, Tsigas D, Kanavakis E (2009) Cell-free DNA levels in acute myocardial infarction patients during hospitalization. Acta Cardiol 64:51–57

    Article  PubMed  Google Scholar 

  38. Lou X, Hou Y, Liang D, Peng L, Chen H, Ma S, Zhang L (2015) A novel Alu-based real-time PCR method for the quantitative detection of plasma circulating cell-free DNA: sensitivity and specificity for the diagnosis of myocardial infarction. Int J Mol Med 35:72–80

    Article  CAS  PubMed  Google Scholar 

  39. Wang L, Xie L, Zhang Q, Cai X, Tang Y, Wang L, Hang T, Liu J, Gong J (2015) Plasma nuclear and mitochondrial DNA levels in acute myocardial infarction patients. Coron Artery Dis 26:296–300

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bliksøen M, Mariero LH, Ohm IK, Haugen F, Yndestad A, Solheim S, Seljeflot I, Ranheim T, Andersen G, Aukrust P, Valen G, Vinge LE (2012) Increased circulating mitochondrial DNA after myocardial infarction. Int J Cardiol 158:132–134

    Article  PubMed  Google Scholar 

  41. Shimony A, Zahger D, Gilutz H, Goldstein H, Orlov G, Merkin M, Shalev A, Ilia R, Douvdevani A (2010) Cell free DNA detected by a novel method in acute ST-elevation myocardial infarction patients. Acute Card Care 12:109–111

    Article  PubMed  Google Scholar 

  42. Zemmour H, Planer D, Magenheim J, Moss J, Neiman D, Gilon D, Korach A, Glaser B, Shemer R, Landesberg G, Dor Y (2018) Non-invasive detection of human cardiomyocyte death using methylation patterns of circulating DNA. Nat Commun 9:1443

    Article  PubMed  PubMed Central  Google Scholar 

  43. Borissoff JI, Joosen IA, Versteylen MO, Brill A, Fuchs TA, Savchenko AS, Gallant M, Martinod K, Ten Cate H, Hofstra L, Crijns HJ, Wagner DD, Kietselaer B (2013) Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol 33:2032–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. de Nigris F, Cacciatore F, Mancini FP, Vitale DF, Mansueto G, D’Armiento FP, Schiano C, Soricelli A, Napoli C (2018) Epigenetic hallmarks of fetal early atherosclerotic lesions in humans. JAMA Cardiol 3:1184–1191

    Article  PubMed  PubMed Central  Google Scholar 

  45. Agha G, Mendelson MM, Ward-Caviness CK, Joehanes R, Huan T, Gondalia R, Salfati E, Brody JA, Fiorito G, Bressler J, Chen BH, Ligthart S, Guarrera S, Colicino E, Just AC, Wahl S, Gieger C, Vandiver AR, Tanaka T, Hernandez DG, Pilling LC, Singleton AB, Sacerdote C, Krogh V, Panico S, Tumino R, Li Y, Zhang G, Stewart JD, Floyd JS, Wiggins KL, Rotter JI, Multhaup M, Bakulski K, Horvath S, Tsao PS, Absher DM, Vokonas P, Hirschhorn J, Fallin MD, Liu C, Bandinelli S, Boerwinkle E, Dehghan A, Schwartz JD, Psaty BM, Feinberg AP, Hou L, Ferrucci L, Sotoodehnia N, Matullo G, Peters A, Fornage M, Assimes TL, Whitsel EA, Levy D, Baccarelli AA (2019) Blood leukocyte DNA methylation predicts risk of future myocardial infarction and coronary heart disease. Circulation 140:645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhong J, Agha G, Baccarelli AA (2016) The role of DNA methylation in cardiovascular risk and disease: methodological aspects, study design, and data analysis for epidemiological studies. Circ Res 118:119–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schiano C, Vietri MT, Grimaldi V, Picascia A, De Pascale MR, Napoli C (2015) Epigenetic-related therapeutic challenges in cardiovascular disease. Trends Pharmacol Sci 36:226–235

    Article  CAS  PubMed  Google Scholar 

  48. Zhou MY, Yang JM, Xiong XD (2018) The emerging landscape of circular RNA in cardiovascular diseases. J Mol Cell Cardiol 122:134–139

    Article  CAS  PubMed  Google Scholar 

  49. Ayupe AC, Reis EM (2017) Evaluating the stability of mRNAs and noncoding RNAs. Methods Mol Biol 1468:139–153

    Article  CAS  PubMed  Google Scholar 

  50. Tang Y, Bao J, Hu J, Liu L, Xu DY (2021) Circular RNA in cardiovascular disease: expression, mechanisms and clinical prospects. J Cell Mol Med 25:1817–1824

    Article  CAS  PubMed  Google Scholar 

  51. Altesha MA, Ni T, Khan A, Liu K, Zheng X (2019) Circular RNA in cardiovascular disease. J Cell Physiol 234:5588–5600

    Article  CAS  PubMed  Google Scholar 

  52. Zhao Z, Li X, Gao C, Jian D, Hao P, Rao L, Li M (2017) Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep 7:39918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang L, Shen C, Wang Y, Zou T, Zhu H, Lu X, Li L, Yang B, Chen J, Chen S, Lu X, Gu D (2019) Identification of circular RNA Hsa_circ_0001879 and Hsa_circ_0004104 as novel biomarkers for coronary artery disease. Atherosclerosis 286:88–96

    Article  CAS  PubMed  Google Scholar 

  54. Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A, Gäbel G, Beutner F, Scholz M, Thiery J, Musunuru K, Krohn K, Mann M, Teupser D (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Salgado-Somoza A, Zhang L, Vausort M, Devaux Y (2017) The circular RNA MICRA for risk stratification after myocardial infarction. Int J Cardiol Heart Vasc 17:33–36

    PubMed  PubMed Central  Google Scholar 

  56. Mao YY, Wang JQ, Guo XX, Bi Y, Wang CX (2018) Circ-SATB2 upregulates STIM1 expression and regulates vascular smooth muscle cell proliferation and differentiation through miR-939. Biochem Biophys Res Commun 505:119–125

    Article  CAS  PubMed  Google Scholar 

  57. Simo-Cheyou ER, Tan JJ, Grygorczyk R, Srivastava AK (2017) STIM-1 and ORAI-1 channel mediate angiotensin-II-induced expression of Egr-1 in vascular smooth muscle cells. J Cell Physiol 232:3496–3509

    Article  CAS  PubMed  Google Scholar 

  58. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Article  CAS  PubMed  Google Scholar 

  59. Li M, Ding W, Tariq MA, Chang W, Zhang X, Xu W, Hou L, Wang Y, Wang J (2018) A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p. Theranostics 8:5855–5869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang K, Gan TY, Li N, Liu CY, Zhou LY, Gao JN, Chen C, Yan KW, Ponnusamy M, Zhang YH, Li PF (2017) Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ 24:1111–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang S, Li X, Zheng H, Si X, Li B, Wei G, Li C, Chen Y, Chen Y, Liao W, Liao Y, Bin J (2019) Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation 139:2857–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, Cai L (2018) miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 39:1073–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang L, Zhang Y, Zhao Y, Wang Y, Ding H, Xue S, Li P (2018) Circulating miRNAs as biomarkers for early diagnosis of coronary artery disease. Expert Opin Ther Pat 28:591–601

    Article  CAS  PubMed  Google Scholar 

  64. Wang W, Li Z, Zheng Y, Yan M, Cui Y, Jiang J (2019) Circulating microRNA-92a level predicts acute coronary syndrome in diabetic patients with coronary heart disease. Lipids Health Dis 18:22

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tabuchi T, Satoh M, Itoh T, Nakamura M (2012) MicroRNA-34a regulates the longevity-associated protein SIRT1 in coronary artery disease: effect of statins on SIRT1 and microRNA-34a expression. Clin Sci (London, England : 1979) 123:161–171

    Article  CAS  Google Scholar 

  66. Takahashi Y, Satoh M, Minami Y, Tabuchi T, Itoh T, Nakamura M (2010) Expression of miR-146a/b is associated with the toll-like receptor 4 signal in coronary artery disease: effect of renin-angiotensin system blockade and statins on miRNA-146a/b and toll-like receptor 4 levels. Clin Sci (London, England : 1979) 119:395–405

    Article  CAS  Google Scholar 

  67. Lawson C, Vicencio JM, Yellon DM, Davidson SM (2016) Microvesicles and exosomes: new players in metabolic and cardiovascular disease. J Endocrinol 228:R57–R71

    Article  PubMed  Google Scholar 

  68. Jansen F, Nickenig G, Werner N (2017) Extracellular vesicles in cardiovascular disease: potential applications in diagnosis, prognosis, and epidemiology. Circ Res 120:1649–1657

    Article  CAS  PubMed  Google Scholar 

  69. Davidson SM, Yellon DM (2018) Exosomes and cardioprotection – a critical analysis. Mol Asp Med 60:104–114

    Article  CAS  Google Scholar 

  70. Alexandru N, Andrei E, Niculescu L, Dragan E, Ristoiu V, Georgescu A (2017) Microparticles of healthy origins improve endothelial progenitor cell dysfunction via microRNA transfer in an atherosclerotic hamster model. Acta Physiol (Oxf) 221:230–249

    Article  CAS  PubMed  Google Scholar 

  71. Alexandru N, Andrei E, Safciuc F, Dragan E, Balahura AM, Badila E, Georgescu A (2020) Intravenous administration of allogenic cell-derived microvesicles of healthy origins defend against atherosclerotic cardiovascular disease development by a direct action on endothelial progenitor cells. Cell 9:423

    Article  CAS  Google Scholar 

  72. Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X, Gao L, Xie J, Xu B (2019) Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res 115:1205–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang Y, Zhang L, Li Y, Chen L, Wang X, Guo W, Zhang X, Qin G, He SH, Zimmerman A, Liu Y, Kim IM, Weintraub NL, Tang Y (2015) Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol 192:61–69

    Article  PubMed  PubMed Central  Google Scholar 

  74. Maring JA, Lodder K, Mol E, Verhage V, Wiesmeijer KC, Dingenouts CKE, Moerkamp AT, Deddens JC, Vader P, Smits AM, Sluijter JPG, Goumans MJ (2019) Cardiac progenitor cell-derived extracellular vesicles reduce infarct size and associate with increased cardiovascular cell proliferation. J Cardiovasc Transl Res 12:5–17

    Article  PubMed  Google Scholar 

  75. Gallet R, Dawkins J, Valle J, Simsolo E, de Couto G, Middleton R, Tseliou E, Luthringer D, Kreke M, Smith RR, Marbán L, Ghaleh B, Marbán E (2017) Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur Heart J 38:201–211

    CAS  PubMed  Google Scholar 

  76. Vicencio JM, Yellon DM, Sivaraman V, Das D, Boi-Doku C, Arjun S, Zheng Y, Riquelme JA, Kearney J, Sharma V, Multhoff G, Hall AR, Davidson SM (2015) Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol 65:1525–1536

    Article  CAS  PubMed  Google Scholar 

  77. Gu H, Liu Z, Li Y, Xie Y, Yao J, Zhu Y, Xu J, Dai Q, Zhong C, Zhu H, Ding S, Zhou L (2018) Serum-derived extracellular vesicles protect against acute myocardial infarction by regulating miR-21/PDCD4 signaling pathway. Front Physiol 9:348

    Article  PubMed  PubMed Central  Google Scholar 

  78. Liu J, Jiang M, Deng S, Lu J, Huang H, Zhang Y, Gong P, Shen X, Ruan H, Jin M, Wang H (2018) miR-93-5p-containing exosomes treatment attenuates acute myocardial infarction-induced myocardial damage. Mol Ther Nucleic Acids 11:103–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Luo Q, Guo D, Liu G, Chen G, Hang M, Jin M (2017) Exosomes from MiR-126-overexpressing Adscs are therapeutic in relieving acute myocardial Ischaemic injury. Cell Physiol Biochem 44:2105–2116

    Article  CAS  PubMed  Google Scholar 

  80. Pan J, Alimujiang M, Chen Q, Shi H, Luo X (2019) Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction-induced myocardial damage via downregulation of early growth response factor 1. J Cell Biochem 120:4433–4443

    Article  CAS  PubMed  Google Scholar 

  81. Jansen F, Yang X, Proebsting S, Hoelscher M, Przybilla D, Baumann K, Schmitz T, Dolf A, Endl E, Franklin BS, Sinning JM, Vasa-Nicotera M, Nickenig G, Werner N (2014) MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J Am Heart Assoc 3:e001249

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yang Y, Li Y, Chen X, Cheng X, Liao Y, Yu X (2016) Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia. J Mol Med (Berl) 94:711–724

    Article  CAS  PubMed  Google Scholar 

  83. Matsumoto S, Sakata Y, Suna S, Nakatani D, Usami M, Hara M, Kitamura T, Hamasaki T, Nanto S, Kawahara Y, Komuro I (2013) Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res 113:322–326

    Article  CAS  PubMed  Google Scholar 

  84. Agrawal H, Choy HK, Liu J, Auyoung M, Albert MA (2020) Coronary artery disease. Arterioscler Thromb Vasc Biol 40:e185–e192

    Article  CAS  PubMed  Google Scholar 

  85. Saenz-Pipaon G, Martinez-Aguilar E, Orbe J, González Miqueo A, Fernandez-Alonso L, Paramo JA, Roncal C (2021) The role of circulating biomarkers in peripheral arterial disease. Int J Mol Sci 22:3601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhu, W., Li, X. (2023). Liquid Biopsy in Coronary Heart Disease. In: Huang, T., Yang, J., Tian, G. (eds) Liquid Biopsies. Methods in Molecular Biology, vol 2695. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3346-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3346-5_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3345-8

  • Online ISBN: 978-1-0716-3346-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics