Skip to main content

Examining the Kinetics of Phagocytosis-Coupled Inflammasome Activation in Murine Bone Marrow-Derived Dendritic Cells

  • Protocol
  • First Online:
Phagocytosis and Phagosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2692))

Abstract

In the present chapter, we describe procedures to assess NLRP3 and NLRC4 inflammasome assembly by immunofluorescence microscopy or live cell imaging, together with inflammasome activation by biochemical and immunological techniques upon phagocytosis. We also include a step-by-step guide to automating the counting of inflammasome “specks” after imaging. While our focus resides on murine bone marrow-derived dendritic cells differentiated in the presence of granulocyte-macrophage colony-stimulating factor, which results in a cell population that resembles inflammatory dendritic cells, the strategies described herein may apply to other phagocytes as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steinman RM (2007) Dendritic cells: understanding immunogenicity. Eur J Immunol 37(Suppl 1):S53–S60. https://doi.org/10.1002/eji.200737400

    Article  CAS  PubMed  Google Scholar 

  2. Barton GM, Kagan JC (2009) A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 9(8):535–542. https://doi.org/10.1038/nri2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Flannagan RS, Jaumouille V, Grinstein S (2012) The cell biology of phagocytosis. Annu Rev Pathol 7:61–98. https://doi.org/10.1146/annurev-pathol-011811-132445

    Article  CAS  PubMed  Google Scholar 

  4. Pauwels AM, Trost M, Beyaert R, Hoffmann E (2017) Patterns, receptors, and signals: regulation of phagosome maturation. Trends Immunol 38(6):407–422. https://doi.org/10.1016/j.it.2017.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vieira OV, Botelho RJ, Grinstein S (2002) Phagosome maturation: aging gracefully. Biochem J 366(Pt 3):689–704. https://doi.org/10.1042/BJ20020691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Underhill DM, Goodridge HS (2012) Information processing during phagocytosis. Nat Rev Immunol 12(7):492–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blander JM, Medzhitov R (2006) On regulation of phagosome maturation and antigen presentation. Nat Immunol 7(10):1029–1035. https://doi.org/10.1038/ni1006-1029

    Article  CAS  PubMed  Google Scholar 

  8. Blander JM, Sander LE (2012) Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat Rev Immunol 12(3):215–225

    Article  CAS  PubMed  Google Scholar 

  9. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13(6):397–411. https://doi.org/10.1038/nri3452

    Article  CAS  PubMed  Google Scholar 

  10. Jaldin-Fincati J, Moussaoui S, Gimenez MC, Ho CY, Lancaster CE, Botelho R, Ausar F, Brookes R, Terebiznik M (2022) Aluminum hydroxide adjuvant diverts the uptake and trafficking of genetically detoxified pertussis toxin to lysosomes in macrophages. Mol Microbiol 117(5):1173–1195. https://doi.org/10.1111/mmi.14900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10(3):241–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832

    Article  CAS  PubMed  Google Scholar 

  13. Martinon F, Tschopp J (2007) Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 14(1):10–22. https://doi.org/10.1038/sj.cdd.4402038

    Article  CAS  PubMed  Google Scholar 

  14. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665. https://doi.org/10.1038/nature15514

    Article  CAS  PubMed  Google Scholar 

  15. Zanoni I, Tan Y, Di Gioia M, Springstead JR, Kagan JC (2017) By capturing inflammatory lipids released from dying cells, the receptor CD14 induces inflammasome-dependent phagocyte hyperactivation. Immunity 47(4):697–709 e693. https://doi.org/10.1016/j.immuni.2017.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen KW, Gross CJ, Sotomayor FV, Stacey KJ, Tschopp J, Sweet MJ, Schroder K (2014) The neutrophil NLRC4 inflammasome selectively promotes IL-1beta maturation without pyroptosis during acute Salmonella challenge. Cell Rep 8(2):570–582. https://doi.org/10.1016/j.celrep.2014.06.028

    Article  CAS  PubMed  Google Scholar 

  17. Horvath GL, Schrum JE, De Nardo CM, Latz E (2011) Intracellular sensing of microbes and danger signals by the inflammasomes. Immunol Rev 243(1):119–135. https://doi.org/10.1111/j.1600-065X.2011.01050.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16(7):407–420. https://doi.org/10.1038/nri.2016.58

    Article  CAS  PubMed  Google Scholar 

  19. Mayes-Hopfinger L, Enache A, Xie J, Huang CL, Kochl R, Tybulewicz VLJ, Fernandes-Alnemri T, Alnemri ES (2021) Chloride sensing by WNK1 regulates NLRP3 inflammasome activation and pyroptosis. Nat Commun 12(1):4546. https://doi.org/10.1038/s41467-021-24784-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stutz A, Horvath GL, Monks BG, Latz E (2013) ASC speck formation as a readout for inflammasome activation. Methods Mol Biol 1040:91–101. https://doi.org/10.1007/978-1-62703-523-1_8

    Article  CAS  PubMed  Google Scholar 

  21. Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, Schröder GF, Fitzgerald KA, Wu H, Egelman EH (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156(6):1193–1206. https://doi.org/10.1016/j.cell.2014.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183(2):787–791. https://doi.org/10.4049/jimmunol.0901363

    Article  CAS  PubMed  Google Scholar 

  23. Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E, Hornung V, Vogel SN, Szomolanyi-Tsuda E, Fitzgerald KA (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11(5):395–402. https://doi.org/10.1038/ni.1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458(7237):509–513. https://doi.org/10.1038/nature07710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu H, Yang J, Gao W, Li L, Li P, Zhang L, Gong YN, Peng X, Xi JJ, Chen S, Wang F, Shao F (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513(7517):237–241. https://doi.org/10.1038/nature13449

    Article  CAS  PubMed  Google Scholar 

  26. Zhao Y, Shao F (2015) The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunol Rev 265(1):85–102. https://doi.org/10.1111/imr.12293

    Article  CAS  PubMed  Google Scholar 

  27. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514(7521):187–192. https://doi.org/10.1038/nature13683

    Article  CAS  PubMed  Google Scholar 

  28. Lee BL, Stowe IB, Gupta A, Kornfeld OS, Roose-Girma M, Anderson K, Warming S, Zhang J, Lee WP, Kayagaki N (2018) Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation. J Exp Med 215(9):2279–2288. https://doi.org/10.1084/jem.20180589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu J, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang Y, Bertram EM, Goodnow CC, Dixit VM (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526(7575):666–671. https://doi.org/10.1038/nature15541

    Article  CAS  PubMed  Google Scholar 

  30. Moretti J, Jia B, Hutchins Z, Roy S, Yip H, Wu J, Shan M, Jaffrey SR, Coers J, Blander JM (2022) Caspase-11 interaction with NLRP3 potentiates the noncanonical activation of the NLRP3 inflammasome. Nat Immunol 23(5):705–717. https://doi.org/10.1038/s41590-022-01192-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, Dixit VM, Monack DM (2012) Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490(7419):288–291. https://doi.org/10.1038/nature11419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lutz MB, Inaba K, Schuler G, Romani N (2016) Still alive and kicking: in-vitro-generated GM-CSF dendritic cells! Immunity 44(1):1–2. https://doi.org/10.1016/j.immuni.2015.12.013

    Article  CAS  PubMed  Google Scholar 

  33. Cheong C, Matos I, Choi JH, Dandamudi DB, Shrestha E, Longhi MP, Jeffrey KL, Anthony RM, Kluger C, Nchinda G, Koh H, Rodriguez A, Idoyaga J, Pack M, Velinzon K, Park CG, Steinman RM (2010) Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209(+) dendritic cells for immune T cell areas. Cell 143(3):416–429. https://doi.org/10.1016/j.cell.2010.09.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Segura E, Amigorena S (2013) Inflammatory dendritic cells in mice and humans. Trends Immunol 34(9):440–445. https://doi.org/10.1016/j.it.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  35. Merad M, Sathe P, Helft J, Miller J, Mortha A (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563–604. https://doi.org/10.1146/annurev-immunol-020711-074950

    Article  CAS  PubMed  Google Scholar 

  36. Gross O (2012) Measuring the inflammasome. Methods Mol Biol 844:199–222

    Article  PubMed  Google Scholar 

  37. Mantegazza AR, Wynosky-Dolfi MA, Casson CN, Lefkovith AJ, Shin S, Brodsky IE, Marks MS (2017) Increased autophagic sequestration in adaptor protein-3 deficient dendritic cells limits inflammasome activity and impairs antibacterial immunity. PLoS Pathog 13(12):e1006785. https://doi.org/10.1371/journal.ppat.1006785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wynosky-Dolfi MA, Snyder AG, Philip NH, Doonan PJ, Poffenberger MC, Avizonis D, Zwack EE, Riblett AM, Hu B, Strowig T, Flavell RA, Jones RG, Freedman BD, Brodsky IE (2014) Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome. J Exp Med 211(4):653–668. https://doi.org/10.1084/jem.20130627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lopez-Haber C, Netting DJ, Hutchins Z, Ma X, Hamilton KE, Mantegazza AR (2022) The phagosomal solute transporter SLC15A4 promotes inflammasome activity via mTORC1 signaling and autophagy restraint in dendritic cells. EMBO J 41(20):e111161. https://doi.org/10.15252/embj.2022111161

    Article  CAS  PubMed  Google Scholar 

  40. Wu J, Fernandes-Alnemri T, Alnemri ES (2010) Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J Clin Immunol 30(5):693–702. https://doi.org/10.1007/s10875-010-9425-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu H, Shi J, Gao H, Liu Y, Yang Z, Shao F, Dong N (2019) The N-end rule ubiquitin ligase UBR2 mediates NLRP1B inflammasome activation by anthrax lethal toxin. EMBO J 38(13):e101996. https://doi.org/10.15252/embj.2019101996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsu BV, Beierschmitt C, Ryan AP, Agarwal R, Mitchell PS, Daugherty MD (2021) Diverse viral proteases activate the NLRP1 inflammasome. Elife 10. https://doi.org/10.7554/eLife.60609

  43. Mantegazza AR, Guttentag SH, El-Benna J, Sasai M, Iwasaki A, Shen H, Laufer TM, Marks MS (2012) Adaptor protein-3 in dendritic cells facilitates phagosomal toll-like receptor signaling and antigen presentation to CD4(+) T cells. Immunity 36(5):782–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Winzler C, Rovere P, Rescigno M, Granucci F, Penna G, Adorini L, Zimmermann VS, Davoust J, Ricciardi-Castagnoli P (1997) Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med 185(2):317–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Morita S, Kojima T, Kitamura T (2000) Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7(12):1063–1066

    Article  CAS  PubMed  Google Scholar 

  46. Gedde MM, Higgins DE, Tilney LG, Portnoy DA (2000) Role of listeriolysin O in cell-to-cell spread of Listeria monocytogenes. Infect Immun 68(2):999–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Glomski IJ, Gedde MM, Tsang AW, Swanson JA, Portnoy DA (2002) The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J Cell Biol 156(6):1029–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  49. Koontz L (2014) TCA precipitation. Methods Enzymol 541:3–10. https://doi.org/10.1016/B978-0-12-420119-4.00001-X

    Article  CAS  PubMed  Google Scholar 

  50. Sester DP, Thygesen SJ, Sagulenko V, Vajjhala PR, Cridland JA, Vitak N, Chen KW, Osborne GW, Schroder K, Stacey KJ (2015) A novel flow cytometric method to assess inflammasome formation. J Immunol 194(1):455–462. https://doi.org/10.4049/jimmunol.1401110

    Article  CAS  PubMed  Google Scholar 

  51. Hoss F, Rolfes V, Davanso MR, Braga TT, Franklin BS (2018) Detection of ASC speck formation by flow cytometry and chemical cross-linking. Methods Mol Biol 1714:149–165. https://doi.org/10.1007/978-1-4939-7519-8_10

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R01 AI137173. The summary figure was created using Biorender.com through Thomas Jefferson University library portal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana R. Mantegazza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Netting, D.J., Mantegazza, A.R. (2023). Examining the Kinetics of Phagocytosis-Coupled Inflammasome Activation in Murine Bone Marrow-Derived Dendritic Cells. In: Botelho, R.J. (eds) Phagocytosis and Phagosomes. Methods in Molecular Biology, vol 2692. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3338-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3338-0_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3337-3

  • Online ISBN: 978-1-0716-3338-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics