Skip to main content

FACS-Based Sequencing Approach to Evaluate Cell Type to Genotype Associations Using Cerebral Organoids

  • Protocol
  • First Online:
Stem Cell-Based Neural Model Systems for Brain Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2683))

  • 994 Accesses

Abstract

Recent technological developments have led to widespread applications of large-scale transcriptomics-based sequencing methods to identify genotype-to-cell type associations. Here we describe a fluorescence-activated cell sorting (FACS)-based sequencing method to utilize CRISPR/Cas9 edited mosaic cerebral organoids to identify or validate genotype-to-cell type associations. Our approach is high-throughput and quantitative and uses internal controls to enable comparisons of the results across different antibody markers and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klein AM, Mazutis L, Akartuna I et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zheng GX, Terry JM, Belgrader P et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stahl PL, Salmen F, Vickovic S et al (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82

    Article  CAS  PubMed  Google Scholar 

  5. Rodriques SG, Stickels RR, Goeva A et al (2019) Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363:1463–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen A, Liao S, Cheng M et al Large field of view-spatially resolved transcriptomics at nanoscale resolution. bioRxiv 2021:2021.2001.2017.427004

    Google Scholar 

  7. Lim ET, Chan Y, Dawes P et al (2022) Orgo-Seq integrates single-cell and bulk transcriptomic data to identify cell type specific-driver genes associated with autism spectrum disorder. Nat Commun 13:3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dawes P, Murray LF, Olson MN et al (2023) oFlowSeq: a quantitative approach to identify protein coding mutations affecting cell type enrichment using mosaic CRISPR-Cas9 edited cerebral organoids. Hum Genet. https://doi.org/10.1007/s00439-023-02534-4

  9. Kosuri S, Goodman DB, Cambray G et al (2013) Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc Natl Acad Sci U S A 110:14024–14029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Raveh-Sadka T, Levo M, Shabi U et al (2012) Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nat Genet 44:743–750

    Article  CAS  PubMed  Google Scholar 

  11. Sharon E, Kalma Y, Sharp A et al (2012) Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat Biotechnol 30:521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lancaster MA, Knoblich JA (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9:2329–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank George Church, Mohammed Uddin, ChangHui Pak, and members of their labs, as well as members in the Program in Bioinformatics & Integrative Biology at UMass Chan Medical School, for their expertise, advice, and suggestions in developing the oFlowSeq method. This study was supported by the National Institutes of Health grants (NHGRI RM1HG008525 to George Church; NIMH R01MH113279 to George Church), Robert Wood Johnson Foundation grant (74178 to George Church), and startup funds by UMass Chan Medical School (Elaine Lim and Yingleong Chan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine T. Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Murray, L., Olson, M.N., Barton, N., Dawes, P., Chan, Y., Lim, E.T. (2023). FACS-Based Sequencing Approach to Evaluate Cell Type to Genotype Associations Using Cerebral Organoids. In: Huang, YW.A., Pak, C. (eds) Stem Cell-Based Neural Model Systems for Brain Disorders. Methods in Molecular Biology, vol 2683. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3287-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3287-1_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3286-4

  • Online ISBN: 978-1-0716-3287-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics