Skip to main content

Cell Line Development Using Targeted Gene Integration into MAR-Rich Landing Pads for Stable Expression of Transgenes

  • Protocol
  • First Online:
Genotype Phenotype Coupling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2681))

Abstract

Integration of a gene of interest (GOI) into the genome of mammalian cells is the first step of cell line development campaigns for the production of biotherapeutics. Besides random integration methods, targeted gene integration approaches have emerged as promising tools over the last few years. In addition to reducing heterogeneity within a pool of recombinant transfectants, this process can also facilitate shorter timelines of the current cell line development process. Herein, we describe protocols for generating host cell lines carrying matrix attachment region (MAR)-rich landing pads (LPs), including BxB1 recombination sites. These LP-containing cell lines allow for site-specific and simultaneous integration of multiple GOIs. The resulting transgene-expressing stable recombinant clones can be used for the production of mono- or multispecific antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30(5):1158–1170

    Article  CAS  PubMed  Google Scholar 

  2. Walsh G (2018) Biopharmaceutical benchmarks 2018. Nat Biotechnol 36(12):1136–1145

    Article  CAS  PubMed  Google Scholar 

  3. Dhara VG, Naik HM, Majewska NI, Betenbaugh MJ (2018) Recombinant antibody production in CHO and NS0 cells: differences and similarities. BioDrugs 32(6):571–584

    Article  CAS  PubMed  Google Scholar 

  4. Barnes LM, Dickson AJ (2006) Mammalian cell factories for efficient and stable protein expression. Curr Opin Biotechnol 17(4):381–386

    Article  CAS  PubMed  Google Scholar 

  5. Noh SM, Sathyamurthy M, Lee GM (2013) Development of recombinant Chinese hamster ovary cell lines for therapeutic protein production. Curr Opin Chem Eng 2(4):391–397

    Article  Google Scholar 

  6. Hamaker NK, Lee KH (2018) Site-specific integration ushers in a new era of precise CHO cell line engineering. Curr Opin Chem Eng 22:152–160

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grav LM, Sergeeva D, Lee JS, Marin de Mas I, Lewis NE, Andersen MR, Nielsen LK, Lee GM, Kildegaard HF (2018) Minimizing clonal variation during mammalian cell line engineering for improved systems biology data generation. ACS Synth Biol 7(9):2148–2159

    Article  CAS  PubMed  Google Scholar 

  8. Lai T, Yang Y, Ng SK (2013) Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals (Basel) 6(5):579–603

    Article  CAS  PubMed  Google Scholar 

  9. Harraghy N, Calabrese D, Fisch I, Girod PA, LeFourn V, Regamey A, Mermod N (2015) Epigenetic regulatory elements: recent advances in understanding their mode of action and use for recombinant protein production in mammalian cells. Biotechnol J 10(7):967–978

    Article  CAS  PubMed  Google Scholar 

  10. Majocchi S, Aritonovska E, Mermod N (2014) Epigenetic regulatory elements associate with specific histone modifications to prevent silencing of telomeric genes. Nucleic Acids Res 42(1):193–204

    Article  CAS  PubMed  Google Scholar 

  11. Zahn-Zabal M, Kobr M, Girod PA, Imhof M, Chatellard P, de Jesus M, Wurm F, Mermod N (2001) Development of stable cell lines for production or regulated expression using matrix attachment regions. J Biotechnol 87(1):29–42

    Article  CAS  PubMed  Google Scholar 

  12. Saunders F, Sweeney B, Antoniou MN, Stephens P, Cain K (2015) Chromatin function modifying elements in an industrial antibody production platform--comparison of UCOE, MAR, STAR and cHS4 elements. PLoS One 10(4):e0120096

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arope S, Harraghy N, Pjanic M, Mermod N (2013) Molecular characterization of a human matrix attachment region epigenetic regulator. PLoS One 8(11):e79262

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ley D, Harraghy N, Le Fourn V, Bire S, Girod PA, Regamey A, Rouleux-Bonnin F, Bigot Y, Mermod N (2013) MAR elements and transposons for improved transgene integration and expression. PLoS One 8(4):e62784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Girod PA, Nguyen DQ, Calabrese D, Puttini S, Grandjean M, Martinet D, Regamey A, Saugy D, Beckmann JS, Bucher P, Mermod N (2007) Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat Methods 4(9):747–753

    Article  CAS  PubMed  Google Scholar 

  16. Kostyrko K, Neuenschwander S, Junier T, Regamey A, Iseli C, Schmid-Siegert E, Bosshard S, Majocchi S, Le Fourn V, Girod PA, Xenarios I, Mermod N (2017) MAR-mediated transgene integration into permissive chromatin and increased expression by recombination pathway engineering. Biotechnol Bioeng 114(2):384–396

    Article  CAS  PubMed  Google Scholar 

  17. Schulze S, Lammers M (2020) The development of genome editing tools as powerful techniques with versatile applications in biotechnology and medicine: CRISPR/Cas9, ZnF and TALE nucleases, RNA interference, and Cre/loxP. ChemTexts 7(1):3

    Article  Google Scholar 

  18. Ng D, Zhou M, Zhan D, Yip S, Ko P, Yim M, Modrusan Z, Joly J, Snedecor B, Laird MW, Shen A (2021) Development of a targeted integration Chinese hamster ovary host directly targeting either one or two vectors simultaneously to a single locus using the Cre/Lox recombinase-mediated cassette exchange system. Biotechnol Prog 37(4):e3140

    CAS  PubMed  Google Scholar 

  19. Gupta SK, Shukla P (2017) Gene editing for cell engineering: trends and applications. Crit Rev Biotechnol 37(5):672–684

    Article  CAS  PubMed  Google Scholar 

  20. Duportet X, Wroblewska L, Guye P, Li Y, Eyquem J, Rieders J, Rimchala T, Batt G, Weiss R (2014) A platform for rapid prototyping of synthetic gene networks in mammalian cells. Nucleic Acids Res 42(21):13440–13451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gaidukov L, Wroblewska L, Teague B, Nelson T, Zhang X, Liu Y, Jagtap K, Mamo S, Tseng WA, Lowe A, Das J, Bandara K, Baijuraj S, Summers NM, Lu TK, Zhang L, Weiss R (2018) A multi-landing pad DNA integration platform for mammalian cell engineering. Nucleic Acids Res 46(8):4072–4086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Inniss MC, Bandara K, Jusiak B, Lu TK, Weiss R, Wroblewska L, Zhang L (2017) A novel Bxb1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO cells. Biotechnol Bioeng 114(8):1837–1846

    Article  CAS  PubMed  Google Scholar 

  23. Srirangan K, Loignon M, Durocher Y (2020) The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese Hamster ovary cells: retrospective analysis and future directions. Crit Rev Biotechnol 40(6):833–851

    Article  CAS  PubMed  Google Scholar 

  24. Crawford Y, Zhou M, Hu Z, Joly J, Snedecor B, Shen A, Gao A (2013) Fast identification of reliable hosts for targeted cell line development from a limited-genome screening using combined φC31 integrase and CRE-Lox technologies. Biotechnol Prog 29(5):1307–1315

    Article  CAS  PubMed  Google Scholar 

  25. Zhang L, Inniss MC, Han S, Moffat M, Jones H, Zhang B, Cox WL, Rance JR, Young RJ (2015) Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line. Biotechnol Prog 31(6):1645–1656

    Article  CAS  PubMed  Google Scholar 

  26. Sergeeva D, Lee GM (2020) Multicopy targeted integration for accelerated development of high-producing Chinese hamster ovary cells. ACS Synth Biol 9(9):2546–2561

    Article  CAS  PubMed  Google Scholar 

  27. Nehlsen K, Schucht R, da Gama-Norton L, Krömer W, Baer A, Cayli A, Hauser H, Wirth D (2009) Recombinant protein expression by targeting pre-selected chromosomal loci. BMC Biotechnol 9:100

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhou S, Chen Y, Gong X, Jin J, Li H (2019) Site-specific integration of light chain and heavy chain genes of antibody into CHO-K1 stable hot spot and detection of antibody and fusion protein expression level. Prep Biochem Biotechnol 49(4):384–390

    Article  CAS  PubMed  Google Scholar 

  29. Oliviero C, Hinz SC, Bogen JP, Kornmann H, Hock B, Kolmar H, Hagens G (2022) Generation of a host cell line containing a MAR-rich landing pad for site-specific integration and expression of transgenes. Biotechnol Prog 38(4):e3254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit Hagens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oliviero, C., Hinz, S.C., Grzeschik, J., Hock, B., Kolmar, H., Hagens, G. (2023). Cell Line Development Using Targeted Gene Integration into MAR-Rich Landing Pads for Stable Expression of Transgenes. In: Zielonka, S., Krah, S. (eds) Genotype Phenotype Coupling. Methods in Molecular Biology, vol 2681. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3279-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3279-6_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3278-9

  • Online ISBN: 978-1-0716-3279-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics