Skip to main content

Chemo-Enzymatic Synthesis of Non-ribosomal Macrolactams by a Penicillin-Binding Protein-Type Thioesterase

  • Protocol
  • First Online:
Non-Ribosomal Peptide Biosynthesis and Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2670))

Abstract

Penicillin-binding protein-type thioesterases (PBP-type TEs) are an emerging family of non-ribosomal peptide cyclases. PBP-type TEs exhibit distinct substrate scopes from the well-exploited ribosomal peptide cyclases and traditional non-ribosomal peptide cyclases. Their unique properties, as well as their stand-alone nature, highlight PBP-type TEs as valuable candidates for development as biocatalysts for peptide macrocyclization. Here in this chapter, we describe the scheme for the chemoenzymatic synthesis of non-ribosomal macrolactam by SurE, a representative member of PBP-type TEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zorzi A, Deyle K, Heinis C (2017) Cyclic peptide therapeutics: past, present and future. Curr Opin Chem Biol 38:24–29

    Article  CAS  PubMed  Google Scholar 

  2. White CJ, Yudin AK (2011) Contemporary strategies for peptide macrocyclization. Nat Chem 3:509–524

    Article  CAS  PubMed  Google Scholar 

  3. Jia X, Kwon S, Anderson Wang CI et al (2014) Semienzymatic cyclization of disulfide-rich peptides using Sortase A. J Biol Chem 289:6627–6638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stanger K, Maurer T, Kaluarachchi H et al (2014) Backbone cyclization of a recombinant cystine-knot peptide by engineered Sortase A. FEBS Lett 588:4487–4496

    Article  CAS  PubMed  Google Scholar 

  5. Thongyoo P, Roqué-Rosell N, Leatherbarrow RJ et al (2008) Chemical and biomimetic total syntheses of natural and engineered MCoTI cyclotides. Org Biomol Chem 6:1462–1470

    Article  CAS  PubMed  Google Scholar 

  6. Nuijens T, Toplak A, van de Meulenreek MBAC et al (2016) Chemo-enzymatic peptide synthesis (CEPS) using omniligases and selective peptiligases efficient biocatalysts for assembling linear and cyclic peptides and protein conjugates. Chem Today 34:16–19

    CAS  Google Scholar 

  7. Nuijens T, Toplak A, Quaedflieg PJML et al (2016) Engineering a diverse ligase toolbox for peptide segment condensation. Adv Synth Catal 358:4041–4048

    Article  CAS  Google Scholar 

  8. Weeks AM, Wells JA (2020) Subtiligase-catalyzed peptide ligation. Chem Rev 120:3127–3160

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen GKT, Wang S, Qiu Y et al (2014) Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat Chem Biol 10:732–738

    Article  CAS  PubMed  Google Scholar 

  10. Yang R, Wong YH, Nguyen GKT et al (2017) Engineering a catalytically efficient recombinant protein ligase. J Am Chem Soc 139:5351–5358

    Article  CAS  PubMed  Google Scholar 

  11. Houssen WE (2019) Peptide cyclization catalyzed by cyanobactin macrocyclases. In: Nuijens T, Schmidt M (eds) Enzyme-mediated ligation methods. Springer, New York, pp 193–210

    Chapter  Google Scholar 

  12. Sarkar S, Gu W, Schmidt EW (2020) Expanding the chemical space of synthetic cyclic peptides using a promiscuous macrocyclase from prenylagaramide biosynthesis. ACS Catal 10:7146–7153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trauger JW, Kohli RM, Mootz HD et al (2000) Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407:215–218

    Article  CAS  PubMed  Google Scholar 

  14. Gao X et al (2012) Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain. Nat Chem Biol 8:823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sims JW, Schmidt EW (2008) Thioesterase-like role for fungal PKS-NRPS hybrid reductive domains. J Am Chem Soc 130:11149–11155

    Article  CAS  PubMed  Google Scholar 

  16. Becker JE, Moore RE, Moore BS (2004) Cloning, sequencing, and biochemical characterization of the nostocyclopeptide biosynthetic gene cluster: molecular basis for imine macrocyclization. Gene 325:35–42

    Article  CAS  PubMed  Google Scholar 

  17. Kopp F, Mahlert C, Grünewald J et al (2006) Peptide macrocyclization: the reductase of the nostocyclopeptide synthetase triggers the self-assembly of a macrocyclic imine. J Am Chem Soc 128:16478–16479

    Article  CAS  PubMed  Google Scholar 

  18. Trauger JW, Kohli RM, Walsh CT (2001) Cyclization of backbone-substituted peptides catalyzed by the thioesterase domain from the tyrocidine nonribosomal peptide synthetase. Biochemistry 40:7092–7098

    Article  CAS  PubMed  Google Scholar 

  19. Kohli RM, Walsh CT, Burkart MD (2002) Biomimetic synthesis and optimization of cyclic peptide antibiotics. Nature 418:658–661

    Article  CAS  PubMed  Google Scholar 

  20. Hoyer KM, Mahlert C, Marahiel MA (2007) The iterative gramicidin S thioesterase catalyzes peptide ligation and cyclization. Chem Biol 14:13–22

    Google Scholar 

  21. Kohli RM, Trauger JW, Schwarzer D et al (2001) Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases. Biochemistry 40:7099–7108

    Article  CAS  PubMed  Google Scholar 

  22. Sieber SA, Walsh CT, Marahiel MA (2003) Loading peptidyl-coenzyme A onto peptidyl carrier proteins: a novel approach in characterizing macrocyclization by thioesterase domains. J Am Chem Soc 125:10862–10866

    Article  CAS  PubMed  Google Scholar 

  23. Frueh DP, Arthanari H, Koglin A et al (2008) Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase. Nature 454:903–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koketsu K, Oguri H, Watanabe K et al (2008) Enzymatic macrolactonization in the presence of DNA leading to triostin A analogs. Chem Biol 15:818–828

    Article  CAS  PubMed  Google Scholar 

  25. Hou J, Robbel L, Marahiel MA (2011) Identification and characterization of the lysobactin biosynthetic gene cluster reveals mechanistic insights into an unusual termination module architecture. Chem Biol 18:655–664

    Article  CAS  PubMed  Google Scholar 

  26. Galea CA, Roberts KD, Zhu Y et al (2017) Functional characterization of the unique terminal thioesterase domain from polymyxin synthetase. Biochemistry 56:657–668

    Article  CAS  PubMed  Google Scholar 

  27. Mandalapu D, Ji X, Chen J et al (2018) Thioesterase-mediated synthesis of teixobactin analogues: mechanism and substrate specificity. J Org Chem 83:7271–7275

    Article  CAS  PubMed  Google Scholar 

  28. Qiao L, Fang J, Zhu P et al (2019) A novel chemoenzymatic approach to produce cilengitide using the thioesterase domain from Microcystis aeruginosa microcystin synthetase C. Protein J 38:658–666

    Google Scholar 

  29. Schmidt JJ, Khatri Y, Brody SI et al (2020) A versatile chemoenzymatic synthesis for the discovery of potent cryptophycin analogs. ACS Chem Biol 15:524–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sieber SA, Marahiel MA (2003) Learning from nature’s drug factories: nonribosomal synthesis of macrocyclic peptides. J Bacteriol 185:7036–7043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matsuda K, Kuranaga T, Wakimoto T (2019) A new cyclase family catalyzing head-to-tail macrolactamization of non-ribosomal peptides. J Syn Org Chem Jpn 77:1106–1115

    Article  CAS  Google Scholar 

  32. Kuranaga T, Matsuda K, Sano A et al (2018) Total synthesis of the nonribosomal peptide surugamide B and identification of a new offloading cyclase family. Angew Chem Int Ed Engl 57:9447–9451

    Article  CAS  PubMed  Google Scholar 

  33. Matsuda K, Kobayashi M, Kuranaga T et al (2019) SurE is a trans-acting thioesterase cyclizing two distinct non-ribosomal peptides. Org Biomol Chem 17:1058–1061

    Google Scholar 

  34. Zhou Y, Lin X, Xu C et al (2019) Investigation of penicillin binding protein (PBP)-like peptide cyclase and hydrolase in surugamide non-ribosomal peptide biosynthesis. Cell Chem Biol 26:737–744

    Article  CAS  PubMed  Google Scholar 

  35. Thankachan D, Fazal A, Francis D et al (2019) A trans-acting cyclase offloading strategy for nonribosomal peptide synthetases. ACS Chem Biol 14:845–849

    Google Scholar 

  36. Matsuda K, Fujita K, Wakimoto T (2021) PenA, a penicillin-binding protein-type thioesterase specialized for small peptide cyclization. J Ind Microbiol Biotechnol 48:kuab023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Q, Song Y, Qin X et al (2015) Identification of the biosynthetic gene cluster for the anti-infective desotamides and production of a new analogue in a heterologous host. J Nat Prod 78:944–948

    Article  CAS  PubMed  Google Scholar 

  38. Son S, Hong YS, Jang M et al (2017) Genomics-driven discovery of chlorinated cyclic hexapeptides ulleungmycins A and B from a Streptomyces Species. J Nat Prod 80:3025–3031

    Google Scholar 

  39. Mudalungu CM, von Törne WJ, Voigt K et al (2019) Noursamycins, chlorinated cyclohexapeptides identified from molecular networking of Streptomyces noursei NTR-SR4. J Nat Prod 82:1478–1486

    Google Scholar 

  40. Liu C, Hashimoto J, Kudo K et al (2021) An atypical arginine dihydrolase involved in the biosynthesis of cyclic hexapeptide longicatenamides. Chem Asian J 16:1382–1387

    Article  CAS  PubMed  Google Scholar 

  41. Magarvey NA, Haltli B, He M et al (2006) Biosynthetic pathway for mannopeptimycins, lipoglycopeptide antibiotics active against drug-resistant gram-positive pathogens. Antimicrob Agents Chemother 50:2167–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ninomiya A, Katsuyama Y, Kuranaga T et al (2016) Biosynthetic gene cluster for Surugamide A encompasses an unrelated decapeptide, Surugamide F. Chembiochem 17:1709–1712

    Article  CAS  PubMed  Google Scholar 

  43. Matsuda K, Zhai R, Mori T et al (2020) Heterochiral coupling in non-ribosomal peptide macrolactamization. Nat Catal 3:507–515

    Google Scholar 

  44. Ralhan K, KrishnaKumar VG, Gupta S (2015) Piperazine and DBU: a safer alternative for rapid and efficient Fmoc deprotection in solid phase peptide synthesis. RSC Adv 5:104417–104425

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was partly supported by Hokkaido University, Global Facility Center (GFC), Pharma Science Open Unit (PSOU), funded by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) under “Support Program for Implementation of New Equipment Sharing System”, Global Station for Biosurfaces and Drug Discovery, a project of Global Institution for Collaborative Research and Education in Hokkaido University, the Asahi Glass Foundation, the Naito Foundation, the Uehara Memorial Foundation, the Sumitomo Foundation−Grant for Basic Science Research Projects, Daiichi Sankyo Foundation of Life Science, Japan Foundation for Applied Enzymology, TERUMO Life Science Foundation, the Japan Agency for Medical Research and Development JP19ae0101045, the Japan Science and Technology Agency (JST Grant Numbers ACT-X JPMJAX201F and A-STEP JPMJTR20US), Japan JP16H06448, JP18H02581, JP19K16390, JP21H02635, JP22K15302 and JP22J13818.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenichi Matsuda or Toshiyuki Wakimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kobayashi, M., Fujita, K., Matsuda, K., Wakimoto, T. (2023). Chemo-Enzymatic Synthesis of Non-ribosomal Macrolactams by a Penicillin-Binding Protein-Type Thioesterase. In: Burkart, M., Ishikawa, F. (eds) Non-Ribosomal Peptide Biosynthesis and Engineering. Methods in Molecular Biology, vol 2670. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3214-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3214-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3213-0

  • Online ISBN: 978-1-0716-3214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics