Skip to main content

Genetic Mouse Models of Pneumocystis Pneumonia

  • Protocol
  • First Online:
Antifungal Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2667))

Abstract

Pneumocystis jirovecii causes pneumonia in immunocompromised patients. A major challenge in drug susceptibility testing and in understanding host/pathogen interactions is that Pneumocystis spp. are not viable in vitro. Continuous culture of the organism is not currently available, and therefore, developing new drug targets is very limited. Due to this limitation, mouse models of Pneumocystis pneumonia have proven to be an invaluable resource to researchers. In this chapter, we provide an overview of selected methods used in mouse models of infection including, in vivo Pneumocystis murina propagation, routes of transmission, genetic mouse models available, a P. murina life form-specific model, a mouse model of PCP immune reconstitution inflammatory syndrome (IRIS), and the experimental parameters associated with these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ma L, Chen Z, Huang D et al (2016) Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts. Nat Commun 7:10740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cushion MT, Tisdale-Macioce N, Sayson SG et al (2021) The persistent challenge of Pneumocystis growth outside the mammalian lung: Past and future approaches. Front Microbiol 12:681474

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shellito J, Suzara VV, Blumenfeld W et al (1990) A new model of Pneumocystis carinii infection in mice selectively depleted of helper T lymphocytes. J Clin Invest 85:16861693

    Article  Google Scholar 

  4. Hughes WT (1982) Natural mode of acquisition for de novo infection with Pneumocystis carinii. J Infect Dis 145:842–848

    Article  CAS  PubMed  Google Scholar 

  5. Powles MA, McFadden DC, Pittarelli LA et al (1992) Mouse model for Pneumocystis carinii pneumonia that uses natural transmission to initiate infection. Infect Immun 4:1397–1400

    Article  Google Scholar 

  6. Wolff L, Horch S, Gemsa D (1993) The development of Pneumocystis Carinii Pneumonia in germ-free rats requires immunosuppression and exposure to the Pneumocystis carinii organism. Comp Immunol Microbiol Infect Dis 16:73–76

    Article  CAS  PubMed  Google Scholar 

  7. An CL, Gigliotti F, Harmsen AG (2003) Exposure of immunocompetent Adult Mice to Pneumocystis carinii f. Sp. Muris by Cohousing: Growth of P. Carinii f. Sp. Muris and Host immune response. Infect Immun 71:2065–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chesnay A, Paget C, Heuzé-Vourc'h N et al (2022) Pneumocystis Pneumonia: pitfalls and hindrances to establishing a reliable animal model. J Fungi (Basel) 8:129

    Article  CAS  PubMed  Google Scholar 

  9. Evans HM, Garvy BA (2018) The trophic life cycle stage of Pneumocystis species induces protective adaptive responses without inflammation-mediated progression to pneumonia. Med Mycol 56:994–1005

    CAS  PubMed  Google Scholar 

  10. Cushion MT, Linke MJ, Ashbaugh A et al (2010) Echinocandin treatment of pneumocystis pneumonia in rodent models depletes cysts leaving trophic burdens that cannot transmit the infection. PLoS One 5:e8524

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wright TW, Gigliotti F, Finkelstein JN et al (1999) Immune-mediated inflammation directly impairs pulmonary function, contributing to the pathogenesis of Pneumocystis carinii pneumonia. J Clin Invest 104:1307–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barry SM, Lipman MC, Deery AR et al (2002) Immune reconstitution pneumonitis following Pneumocystis carinii pneumonia in HIV infected subjects. HIV Med 3:207–211

    Article  CAS  PubMed  Google Scholar 

  13. Bhagwat SP, Gigliotti F, Xu H et al (2006) Contribution of T cell subsets to the pathophysiology of Pneumocystis-related immunorestitution disease. Am J Physiol Lung Cell Mol Physiol 291:L1256–L1266

    Article  CAS  PubMed  Google Scholar 

  14. Wang J, Gigliotti F, Bhagwat SP et al (2010) Immune modulation with sulfasalazine attenuates immunopathogenesis but enhances macrophage-mediated fungal clearance during Pneumocystis pneumonia. PLoS Pathog 19:e1001058

    Article  Google Scholar 

  15. Hanano R, Reifenberg K, Kaufmann SH (1996) Naturally acquired pneumocystis carinii pneumonia in gene disruption mutant mice: roles of distinct T-cell populations in infection. Infect Immun 64:3201–3209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zheng M, Cai Y, Eddens T et al (2014) Novel pneumocystis antigen discovery using fungal surface proteomics. Infect Immun 82:2417–2423

    Article  PubMed  PubMed Central  Google Scholar 

  17. McKinley L, Logar AJ, McAllister F et al (2006) Regulatory T cells dampen pulmonary inflammation and lung injury in an animal model of pneumocystis pneumonia. J Immunol 177:6215–6226

    Article  CAS  PubMed  Google Scholar 

  18. Elsegeiny W, Zheng M, Eddens T et al (2018) Murine models of pneumocystis infection recapitulate human primary immune disorders. JCI Insight 21:e91894

    Article  Google Scholar 

  19. Zheng M, Shellito JE, Marrero L et al (2001) CD4+ T cell-independent vaccination against Pneumocystis carinii in mice. J Clin Invest 108:1469–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ricks DM, Chen K, Zheng M et al (2013) Dectin immunoadhesins and pneumocystis pneumonia. Infect Immun 81:3451–3462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eddens T, Elsegeiny W, Nelson MP et al (2015) Eosinophils contribute to early clearance of Pneumocystis murina infection. J Immunol 195:185–193

    Article  CAS  PubMed  Google Scholar 

  22. Nature (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  Google Scholar 

  23. Kelly MN, Zheng M, Ruan S et al (2013) Memory CD4+T cells are required for optimal NK cell effector functions against the opportunistic fungal pathogen Pneumocystis murina. J Immunol 190:285–295

    Article  CAS  PubMed  Google Scholar 

  24. Opata MM, Hollifield ML, Lund FE et al (2015) B lymphocytes are required during the early priming of CD4+ T cells for clearance of Pneumocystis infection in mice. J Immunol 195:611–620

    Article  CAS  PubMed  Google Scholar 

  25. Wright TW, Johnston CJ, Harmsen AG et al (1999) Chemokine gene expression during Pneumocystis carinii-driven pulmonary inflammation. Infect Immun 67:3452–3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roths JB, Marshall JD, Allen RD (1990) Spontaneous Pneumocystis carinii pneumonia in immunodeficient mutant scid mice. Natural history and pathobiology. Am J Pathol 136:1173

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lund FE, Schuer K, Hollifield ML et al (2003) Clearance of pneumocystis carinii in mice is dependent on B cells but not on P. carinii-specific antibody. J Immunol 171:1423–1430

    Article  CAS  PubMed  Google Scholar 

  28. Wiley J, Harmsen A (1995) CD40 ligand is required for resolution of Pneumocystis carinii pneumonia in mice. J Immunol 155:3525–3529

    Article  CAS  PubMed  Google Scholar 

  29. Linke MJ, Ashbaugh AD, Demland JA et al (2009) Pneumocystis murina colonization in immunocompetent surfactant protein a deficient mice following environmental exposure. Respir Res 10:1–15

    Article  Google Scholar 

  30. Tasaka S, Hasegawa N, Kobayashi S et al (2007) Serum indicators for the diagnosis of pneumocystis pneumonia. Chest 131:1173–1180

    Article  CAS  PubMed  Google Scholar 

  31. Linke MJ, Ashbaugh A, Collins MS et al (2013) Characterization of a distinct host response profile to Pneumocystis murina asci during clearance of pneumocystis pneumonia. Infect Immun 81:984–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cushion MT, Collins MS, Linke MJ (2009) Biofilm formation by Pneumocystis spp. Eukaryot Cell 8:197–206

    Article  CAS  PubMed  Google Scholar 

  33. Odabasi Z, Paetznick VL, Rodriguez JR et al (2006) Differences in beta-glucan levels in culture supernatants of a variety of fungi. Med Mycol 44:267–272

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Claire Hoving or Jay K. Kolls .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hoving, J.C., Munyonho, F.T., Kolls, J.K. (2023). Genetic Mouse Models of Pneumocystis Pneumonia. In: Drummond, R.A. (eds) Antifungal Immunity. Methods in Molecular Biology, vol 2667. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3199-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3199-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3198-0

  • Online ISBN: 978-1-0716-3199-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics