Skip to main content

Biomechanical Weakening of Paper and Plant Cell Walls by Bacterial Expansins

  • Protocol
  • First Online:
Carbohydrate-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2657))

Abstract

Expansins are proteins that loosen plant cell walls but lack enzymatic activity. Here we describe two protocols tailored to measure the biomechanical activity of bacterial expansin. The first assay relies on the weakening of filter paper by expansin. The second assay is based on induction of creep (long-term, irreversible extension) of plant cell wall samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cosgrove DJ (2016) Catalysts of plant cell wall loosening. F1000Research 5(119). https://doi.org/10.12688/f1000research.7180.1

  2. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407(6802):321–326. https://doi.org/10.1038/35030000

    Article  CAS  PubMed  Google Scholar 

  3. McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433. https://doi.org/10.1105/tpc.4.11.1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Whitney SEC, Gidley MJ, McQueen-Mason SJ (2000) Probing expansin action using cellulose/hemicellulose composites. Plant J 22(4):327–334. https://doi.org/10.1046/j.1365-313x.2000.00742.x

    Article  CAS  PubMed  Google Scholar 

  5. Qin L, Kudla U, Roze EH, Goverse A, Popeijus H, Nieuwland J et al (2004) Plant degradation: a nematode expansin acting on plants. Nature 427(6969):30

    Article  CAS  PubMed  Google Scholar 

  6. Cho HT, Kende H (1997) Expansins in deepwater rice internodes. Plant Physiol 113(4):1137–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kerff F, Amoroso A, Herman R, Sauvage E, Petrella S, Filee P et al (2008) Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc Natl Acad Sci USA 105(44):16876–16881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang T, Zheng Y, Cosgrove DJ (2016) Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant J 85(2):179–192. https://doi.org/10.1111/tpj.13102

    Article  CAS  PubMed  Google Scholar 

  9. Cosgrove DJ (2022) Building an extensible cell wall. Plant Physiol 189(3):1246–1277. https://doi.org/10.1093/plphys/kiac184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Y, Yu J, Wang X, Durachko DM, Zhang S, Cosgrove DJ (2021) Molecular insights into the complex mechanics of plant epidermal cell walls. Science 372(6543):706–711. https://doi.org/10.1126/science.abf2824

    Article  CAS  PubMed  Google Scholar 

  11. Cosgrove DJ (2015) Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol 25(0):162–172. https://doi.org/10.1016/j.pbi.2015.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burgert I, Keplinger T (2013) Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis. J Exp Bot 64(15):4635–4649. https://doi.org/10.1093/jxb/ert255

    Article  CAS  PubMed  Google Scholar 

  13. Cleland RE (1984) The Instron technique as a measure of immediate-past wall extensibility. Planta 160(6):514–520. https://doi.org/10.1007/Bf00411139

    Article  CAS  PubMed  Google Scholar 

  14. Bidhendi AJ, Geitmann A (2019) Methods to quantify primary plant cell wall mechanics. J Exp Bot 70:3615–3648. https://doi.org/10.1093/jxb/erz281

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi K, Hirata S, Kido N, Katou K (2006) Wall-yielding properties of cell walls from elongating cucumber hypocotyls in relation to the action of expansin. Plant Cell Physiol 47(11):1520–1529

    Article  CAS  PubMed  Google Scholar 

  16. Cosgrove DJ (2016) Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67(2):463–476. https://doi.org/10.1093/jxb/erv511

    Article  CAS  PubMed  Google Scholar 

  17. Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ et al (2013) Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. Proc Natl Acad Sci U S A 110(41):16444–16449. https://doi.org/10.1073/pnas.1316290110

    Article  PubMed  PubMed Central  Google Scholar 

  18. Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158(4):1933–1943. https://doi.org/10.1104/pp.111.192880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Georgelis N, Nikolaidis N, Cosgrove DJ (2015) Bacterial expansins and related proteins from the world of microbes. Appl Microbiol Biotechnol 99(9):3807–3823. https://doi.org/10.1007/s00253-015-6534-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pastor N, Davila S, Perez-Rueda E, Segovia L, Martinez-Anaya C (2014) Electrostatic analysis of bacterial expansins. Proteins 83:215–223. https://doi.org/10.1002/prot.24718

    Article  CAS  PubMed  Google Scholar 

  21. Chase WR, Zhaxybayeva O, Rocha J, Cosgrove DJ, Shapiro LR (2020) Global cellulose biomass, horizontal gene transfers and domain fusions drive microbial expansin evolution. New Phytol 226(3):921–938. https://doi.org/10.1111/nph.16428

    Article  CAS  PubMed  Google Scholar 

  22. Nikolaidis N, Doran N, Cosgrove DJ (2014) Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion. Mol Biol Evol 31(2):376–386. https://doi.org/10.1093/molbev/mst206

    Article  CAS  PubMed  Google Scholar 

  23. Narvaez-Barragan DA, Tovar-Herrera OE, Guevara-Garcia A, Serrano M, Martinez-Anaya C (2022) Mechanisms of plant cell wall surveillance in response to pathogens, cell wall-derived ligands and the effect of expansins to infection resistance or susceptibility. Front Plant Sci 13:969343. https://doi.org/10.3389/fpls.2022.969343

    Article  PubMed  PubMed Central  Google Scholar 

  24. Narváez-Barragán DA, Tovar-Herrera OE, Torres M, Rodríguez M, Humphris S, Toth IK et al (2020) Expansin-like Exl1 from Pectobacterium is a virulence factor required for host infection, and induces a defence plant response involving ROS, and jasmonate, ethylene and salicylic acid signalling pathways in Arabidopsis thaliana. Sci Rep 10(1):7747

    Article  PubMed  PubMed Central  Google Scholar 

  25. Narvaez-Barragan DA, Tovar-Herrera OE, Segovia L, Serrano M, Martinez-Anaya C (2020) Expansin-related proteins: biology, microbe-plant interactions and associated plant-defense responses. Microbiology (Reading) 166(11):1007–1018. https://doi.org/10.1099/mic.0.000984

    Article  CAS  PubMed  Google Scholar 

  26. Durachko DM, Cosgrove DJ (2009) Measuring plant cell wall extension (creep) induced by acidic pH and by alpha-expansin. J Vis Exp JoVE 25:1263. https://doi.org/10.3791/1263

    Article  Google Scholar 

  27. Sampedro J, Guttman M, Li LC, Cosgrove DJ (2015) Evolutionary divergence of beta-expansin structure and function in grasses parallels emergence of distinctive primary cell wall traits. Plant J 81(1):108–120. https://doi.org/10.1111/tpj.12715

    Article  CAS  PubMed  Google Scholar 

  28. Cosgrove DJ, Bedinger P, Durachko DM (1997) Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci USA 94(12):6559–6564. https://doi.org/10.1073/pnas.94.12.6559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li LC, Bedinger PA, Volk C, Jones AD, Cosgrove DJ (2003) Purification and characterization of four beta-expansins (Zea m 1 isoforms) from maize pollen. Plant Physiol 132(4):2073–2085. https://doi.org/10.1104/pp.103.020024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tabuchi A, Li LC, Cosgrove DJ (2011) Matrix solubilization and cell wall weakening by beta-expansin (group-1 allergen) from maize pollen. Plant J 68(3):546–559. https://doi.org/10.1111/j.1365-313X.2011.04705.x

    Article  CAS  PubMed  Google Scholar 

  31. Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476. https://doi.org/10.1146/annurev.arplant.47.1.445

    Article  CAS  PubMed  Google Scholar 

  32. Georgelis N, Nikolaidis N, Cosgrove DJ (2014) Biochemical analysis of expansin-like proteins from microbes. Carbohydr Polym 100:17–23. https://doi.org/10.1016/j.carbpol.2013.04.094

    Article  CAS  PubMed  Google Scholar 

  33. Georgelis N, Tabuchi A, Nikolaidis N, Cosgrove DJ (2011) Structure-function analysis of the bacterial expansin EXLX1. J Biol Chem 286(19):16814–16823. https://doi.org/10.1074/jbc.M111.225037

Download references

Acknowledgments

This work was supported by United States Department of Energy Grant DE-FG02-84ER13179 from the Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Cosgrove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cosgrove, D.J., Hepler, N.K., Wagner, E.R., Durachko, D.M. (2023). Biomechanical Weakening of Paper and Plant Cell Walls by Bacterial Expansins. In: Abbott, D.W., Zandberg, W.F. (eds) Carbohydrate-Protein Interactions. Methods in Molecular Biology, vol 2657. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3151-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3151-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3150-8

  • Online ISBN: 978-1-0716-3151-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics