Skip to main content

Perspectives: Approaches for Studying Livestock Spermatogonia

  • Protocol
  • First Online:
Spermatogonial Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2656))

  • 436 Accesses

Abstract

At present, the knowledge base on characteristics and biology of spermatogonia in livestock is limited in comparison to rodents, yet the importance of studying these cells for comparative species analysis and enhancing reproductive capacity in food animals is high. Previous studies have established that although many core attributes of organ physiology and mechanisms governing essential cellular functions are conserved across eutherians, significant differences exist between mice and higher order mammals. In this chapter, we briefly discuss distinguishing aspects of testicular anatomy and the spermatogenic lineage in livestock and critical considerations for studying spermatogonial stem cell biology in these species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell LD, Ettlin RA, Hikim APS, Cless ED (1990) Histological and histopathological evaluation of the testis, 1st edn. Cache River Press, St. Louis

    Google Scholar 

  2. Bustos-Obregon E (1976) Ultrastructure and function of the lamina propria of mammalian seminiferous tubules. Andrologia 8(3):179–185

    Article  CAS  PubMed  Google Scholar 

  3. Figueiredo AFA et al (2021) Insights into differentiation and function of the transition region between the seminiferous tubule and rete testis. Differentiation 120:36–47

    Article  CAS  PubMed  Google Scholar 

  4. Dym M (1974) The fine structure of monkey Sertoli cells in the transitional zone at the junction of the seminiferous tubules with the tubuli recti. Am J Anat 140(1):1–25

    Article  CAS  PubMed  Google Scholar 

  5. Hermo L, Dworkin J (1988) Transitional cells at the junction of seminiferous tubules with the rete testis of the rat: their fine structure, endocytic activity, and basement membrane. Am J Anat 181(2):111–131

    Article  CAS  PubMed  Google Scholar 

  6. Aiyama Y et al (2015) A niche for GFRalpha1-positive spermatogonia in the terminal segments of the seminiferous tubules in hamster testes. Stem Cells 33(9):2811–2824

    Article  CAS  PubMed  Google Scholar 

  7. de Rooij DG, Russell LD (2000) All you wanted to know about spermatogonia but were afraid to ask. J Androl 21(6):776–798

    PubMed  Google Scholar 

  8. Griswold MD (2016) Spermatogenesis: the commitment to meiosis. Physiol Rev 96(1):1–17

    Article  CAS  PubMed  Google Scholar 

  9. Griswold MD (2018) 50 years of spermatogenesis: Sertoli cells and their interactions with germ cells. Biol Reprod 99:87

    Article  PubMed  PubMed Central  Google Scholar 

  10. Clermont Y (1972) Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev 52(1):198–236

    Article  CAS  PubMed  Google Scholar 

  11. Staub C, Johnson L (2018) Review: spermatogenesis in the bull. Animal 12(s1):s27–s35

    Article  CAS  PubMed  Google Scholar 

  12. Franca LR, Becker-Silva SC, Chiarini-Garcia H (1999) The length of the cycle of seminiferous epithelium in goats (Capra hircus). Tissue Cell 31(3):274–280

    Article  CAS  PubMed  Google Scholar 

  13. Frankenhuis MT, Kramer MF, de Rooij DG (1982) Spermatogenesis in the boar. Vet Q 4(2):57–61

    Article  CAS  PubMed  Google Scholar 

  14. Courot M, Ortavant R (1981) Endocrine control of spermatogenesis in the ram. J Reprod Fertil Suppl 30:47–60

    CAS  PubMed  Google Scholar 

  15. Amann RP (1962) Reproductive capacity of dairy bulls. IV. Spermatogenesis and testicular germ cell degeneration. Am J Anat 110:69–78

    Article  CAS  PubMed  Google Scholar 

  16. Johnson L, Petty CS, Neaves WB (1980) A comparative study of daily sperm production and testicular composition in humans and rats. Biol Reprod 22(5):1233–1243

    Article  CAS  PubMed  Google Scholar 

  17. Oatley JM, Brinster RL (2008) Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol 24:263–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Rooij DG (1973) Spermatogonial stem cell renewal in the mouse. I Normal situation. Cell Tissue Kinet 6(3):281–287

    PubMed  Google Scholar 

  19. Endo T et al (2015) Periodic retinoic acid-STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis. Proc Natl Acad Sci U S A 112(18):E2347–E2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hogarth CA et al (2015) Processive pulses of retinoic acid propel asynchronous and continuous murine sperm production. Biol Reprod 92(2):37

    Article  PubMed  Google Scholar 

  21. Tegelenbosch RA, de Rooij DG (1993) A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res 290(2):193–200

    Article  CAS  PubMed  Google Scholar 

  22. Koubova J et al (2006) Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci U S A 103(8):2474–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A 91(24):11298–11302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brinster RL, Avarbock MR (1994) Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A 91(24):11303–11307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ciccarelli M et al (2020) Donor-derived spermatogenesis following stem cell transplantation in sterile NANOS2 knockout males. Proc Natl Acad Sci U S A 117(39):24195–24204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buaas FW et al (2004) Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 36(6):647–652

    Article  CAS  PubMed  Google Scholar 

  27. Costoya JA et al (2004) Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 36(6):653–659

    Article  CAS  PubMed  Google Scholar 

  28. Kwon J et al (2004) Developmental regulation of ubiquitin C-terminal hydrolase isozyme expression during spermatogenesis in mice. Biol Reprod 71(2):515–521

    Article  CAS  PubMed  Google Scholar 

  29. Oatley MJ et al (2016) Conditions for long-term culture of cattle undifferentiated spermatogonia. Biol Reprod 95(1):14

    Article  PubMed  Google Scholar 

  30. Herrid M, Davey RJ, Hill JR (2007) Characterization of germ cells from pre-pubertal bull calves in preparation for germ cell transplantation. Cell Tissue Res 330(2):321–329

    Article  PubMed  Google Scholar 

  31. Clotaire DZJ et al (2019) Functions of promyelocytic leukaemia zinc finger (Plzf) in male germline stem cell development and differentiation. Reprod Fertil Dev 31:1315

    Article  CAS  PubMed  Google Scholar 

  32. Borjigin U et al (2010) Expression of promyelocytic leukaemia zinc-finger in ovine testis and its application in evaluating the enrichment efficiency of differential plating. Reprod Fertil Dev 22(5):733–742

    Article  CAS  PubMed  Google Scholar 

  33. Luo J et al (2006) Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol Reprod Dev 73(12):1531–1540

    Article  CAS  PubMed  Google Scholar 

  34. La HM et al (2018) Identification of dynamic undifferentiated cell states within the male germline. Nat Commun 9(1):2819

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kubota H, Avarbock MR, Brinster RL (2003) Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci U S A 100(11):6487–6492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shinohara T, Avarbock MR, Brinster RL (1999) beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 96(10):5504–5509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kanatsu-Shinohara M, Toyokuni S, Shinohara T (2004) CD9 is a surface marker on mouse and rat male germline stem cells. Biol Reprod 70(1):70–75

    Article  CAS  PubMed  Google Scholar 

  38. Lee WY et al (2013) Establishment and in vitro culture of porcine spermatogonial germ cells in low temperature culture conditions. Stem Cell Res 11(3):1234–1249

    Article  CAS  PubMed  Google Scholar 

  39. Reding SC et al (2010) THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis. Reproduction 139(5):893–903

    Article  CAS  PubMed  Google Scholar 

  40. Abbasi H et al (2013) THY1 as a reliable marker for enrichment of undifferentiated spermatogonia in the goat. Theriogenology 80(8):923–932

    Article  CAS  PubMed  Google Scholar 

  41. Cai H et al (2016) Enrichment and culture of spermatogonia from cryopreserved adult bovine testis tissue. Anim Reprod Sci 166:109–115

    Article  PubMed  Google Scholar 

  42. Kim YH et al (2013) Stage-specific embryonic antigen-1 expression by undifferentiated spermatogonia in the prepubertal boar testis. J Anim Sci 91(7):3143–3154

    Article  CAS  PubMed  Google Scholar 

  43. Suyatno et al (2018) Long-term culture of undifferentiated spermatogonia isolated from immature and adult bovine testes. Mol Reprod Dev 85(3):236–249

    Article  CAS  PubMed  Google Scholar 

  44. Goel S et al (2007) Identification, isolation, and in vitro culture of porcine gonocytes. Biol Reprod 77(1):127–137

    Article  CAS  PubMed  Google Scholar 

  45. Oatley JM et al (2009) Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development 136(7):1191–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen H et al (2017) Leydig cell stem cells: identification, proliferation and differentiation. Mol Cell Endocrinol 445:65–73

    Article  CAS  PubMed  Google Scholar 

  47. Tepekoy F et al (2015) CD90 and CD105 expression in the mouse ovary and testis at different stages of postnatal development. Reprod Biol 15(4):195–204

    Article  PubMed  Google Scholar 

  48. Helsel AR et al (2017) ID4 levels dictate the stem cell state in mouse spermatogonia. Development 144(4):624–634

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chan F et al (2014) Functional and molecular features of the Id4+ germline stem cell population in mouse testes. Genes Dev 28(12):1351–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oatley MJ et al (2011) Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol Reprod 85(2):347–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aloisio GM et al (2014) PAX7 expression defines germline stem cells in the adult testis. J Clin Invest 124(9):3929–3944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hara K et al (2014) Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states. Cell Stem Cell 14(5):658–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sachs C et al (2014) Evaluation of candidate spermatogonial markers ID4 and GPR125 in testes of adult human cadaveric organ donors. Andrology 2(4):607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hermann BP et al (2018) The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids. Cell Rep 25(6):1650–1667. e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shami AN et al (2020) Single-cell RNA sequencing of human, macaque, and mouse testes uncovers conserved and divergent features of mammalian spermatogenesis. Dev Cell 54(4):529–547. e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakamura Y et al (2021) Transient suppression of transplanted spermatogonial stem cell differentiation restores fertility in mice. Cell Stem Cell 28(8):1443–1456. e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ebata KT, Zhang X, Nagano MC (2005) Expression patterns of cell-surface molecules on male germ line stem cells during postnatal mouse development. Mol Reprod Dev 72(2):171–181

    Article  CAS  PubMed  Google Scholar 

  58. Garbuzov A et al (2018) Purification of GFRalpha1+ and GFRalpha1- spermatogonial stem cells reveals a niche-dependent mechanism for fate determination. Stem Cell Rep 10(2):553–567

    Article  CAS  Google Scholar 

  59. Zheng K et al (2009) The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse. BMC Dev Biol 9:38

    Article  PubMed  PubMed Central  Google Scholar 

  60. Manova K et al (1990) Gonadal expression of c-kit encoded at the W locus of the mouse. Development 110(4):1057–1069

    Article  CAS  PubMed  Google Scholar 

  61. Yoshinaga K et al (1991) Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development 113(2):689–699

    Article  CAS  PubMed  Google Scholar 

  62. Sharma M et al (2019) Identification of EOMES-expressing spermatogonial stem cells and their regulation by PLZF. elife 8:e43352

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kanatsu-Shinohara M et al (2003) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 69(2):612–616

    Article  CAS  PubMed  Google Scholar 

  64. Kubota H, Avarbock MR, Brinster RL (2004) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 101(47):16489–16494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kanatsu-Shinohara M et al (2014) Improved serum- and feeder-free culture of mouse germline stem cells. Biol Reprod 91(4):88

    Article  PubMed  Google Scholar 

  66. Kanatsu-Shinohara M, Shinohara T (2007) Culture and genetic modification of mouse germline stem cells. Ann N Y Acad Sci 1120:59–71

    Article  PubMed  Google Scholar 

  67. Shiromoto Y et al (2019) GPAT2 is required for piRNA biogenesis, transposon silencing, and maintenance of spermatogonia in micedagger. Biol Reprod 101(1):248–256

    Article  PubMed  Google Scholar 

  68. Mulder CL et al (2018) Long-term health in recipients of transplanted in vitro propagated spermatogonial stem cells. Hum Reprod 33(1):81–90

    Article  CAS  PubMed  Google Scholar 

  69. Sato T et al (2013) In vitro sperm production from mouse spermatogonial stem cell lines using an organ culture method. Nat Protoc 8(11):2098–2104

    Article  CAS  PubMed  Google Scholar 

  70. Kanatsu-Shinohara M et al (2005) Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development 132(18):4155–4163

    Article  CAS  PubMed  Google Scholar 

  71. Helsel AR, Oatley MJ, Oatley JM (2017) Glycolysis-optimized conditions enhance maintenance of regenerative integrity in mouse spermatogonial stem cells during long-term culture. Stem Cell Rep 8:1430

    Article  CAS  Google Scholar 

  72. Aponte PM et al (2006) Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor. Theriogenology 65(9):1828–1847

    Article  CAS  PubMed  Google Scholar 

  73. Izadyar F et al (2003) Proliferation and differentiation of bovine type A spermatogonia during long-term culture. Biol Reprod 68(1):272–281

    Article  CAS  PubMed  Google Scholar 

  74. Zhao X et al (2021) Isolation and in vitro expansion of porcine spermatogonial stem cells. Reprod Domest Anim 57(2):210–220

    Article  PubMed  Google Scholar 

  75. Zhang P et al (2017) Long-term propagation of porcine undifferentiated spermatogonia. Stem Cells Dev 26(15):1121–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhao HM et al (2016) Isolation, proliferation, and induction of Bama mini-pig spermatogonial stem cells in vitro. Genet Mol Res 15(3). https://doi.org/10.4238/gmr.15038602

  77. Heidari B et al (2012) Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and PGP9.5 markers. J Assist Reprod Genet 29(10):1029–1038

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pramod RK, Mitra A (2014) In vitro culture and characterization of spermatogonial stem cells on Sertoli cell feeder layer in goat (Capra hircus). J Assist Reprod Genet 31(8):993–1001

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhu H et al (2014) Characterization of immortalized dairy goat male germline stem cells (mGSCs). J Cell Biochem 115(9):1549–1560

    Article  CAS  PubMed  Google Scholar 

  80. Qasemi-Panahi B et al (2018) Isolation and proliferation of spermatogonial cells from Ghezel sheep. Avicenna J Med Biotechnol 10(2):93–97

    PubMed  PubMed Central  Google Scholar 

  81. Binsila KB et al (2018) Isolation and enrichment of putative spermatogonial stem cells from ram (Ovis aries) testis. Anim Reprod Sci 196:9–18

    Article  PubMed  Google Scholar 

  82. Giassetti MI, Ciccarelli M, Oatley JM (2019) Spermatogonial stem cell transplantation: insights and outlook for domestic animals. Annu Rev Anim Biosci 7:385–401

    Article  PubMed  Google Scholar 

  83. Herrid M et al (2006) Successful transplantation of bovine testicular cells to heterologous recipients. Reproduction 132(4):617–624

    Article  CAS  PubMed  Google Scholar 

  84. Honaramooz A et al (2003) Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol Reprod 69(4):1260–1264

    Article  CAS  PubMed  Google Scholar 

  85. Honaramooz A et al (2003) Germ cell transplantation in goats. Mol Reprod Dev 64(4):422–428

    Article  CAS  PubMed  Google Scholar 

  86. Honaramooz A, Megee SO, Dobrinski I (2002) Germ cell transplantation in pigs. Biol Reprod 66(1):21–28

    Article  CAS  PubMed  Google Scholar 

  87. Stockwell S et al (2013) Transplanted germ cells persist long-term in irradiated ram testes. Anim Reprod Sci 142(3–4):137–140

    Article  CAS  PubMed  Google Scholar 

  88. Stockwell S et al (2009) Microsatellite detection of donor-derived sperm DNA following germ cell transplantation in cattle. Reprod Fertil Dev 21(3):462–468

    Article  CAS  PubMed  Google Scholar 

  89. Herrid M et al (2009) Irradiation enhances the efficiency of testicular germ cell transplantation in sheep. Biol Reprod 81(5):898–905

    Article  CAS  PubMed  Google Scholar 

  90. Izadyar F et al (2003) Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction 126(6):765–774

    Article  CAS  PubMed  Google Scholar 

  91. Rodriguez-Sosa JR, Dobson H, Hahnel A (2006) Isolation and transplantation of spermatogonia in sheep. Theriogenology 66(9):2091–2103

    Article  PubMed  Google Scholar 

  92. Rodriguez-Sosa JR et al (2009) Transduction and transplantation of spermatogonia into the testis of ram lambs through the extra-testicular rete. Reprod Domest Anim 44(4):612–620

    Article  CAS  PubMed  Google Scholar 

  93. Ogawa T et al (1997) Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol 41(1):111–122

    CAS  PubMed  Google Scholar 

  94. Heller CH, Clermont Y (1964) Kinetics of the germinal epithelium in man. Recent Prog Horm Res 20:545–575

    CAS  PubMed  Google Scholar 

  95. Swierstra EE (1968) Cytology and duration of the cycle of the seminiferous epithelium of the boar; duration of spermatozoan transit through the epididymis. Anat Rec 161(2):171–185

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon M. Oatley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ciccarelli, M., Oatley, J.M. (2023). Perspectives: Approaches for Studying Livestock Spermatogonia. In: M. Oatley, J., Hermann, B.P. (eds) Spermatogonial Stem Cells. Methods in Molecular Biology, vol 2656. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3139-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3139-3_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3138-6

  • Online ISBN: 978-1-0716-3139-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics