Skip to main content

Analyzing Iron and Oxygen-Regulated Protein Complex Formation Using Proteomic Mass Spectrometry

  • Protocol
  • First Online:
Oxygen Sensing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2648))

Abstract

Multicellular organisms have evolved elaborate strategies to sense and adapt to changes in intracellular oxygen. The canonical cellular pathway responsible for oxygen sensing consists of the von Hippel-Lindau (pVHL) tumor suppressor protein, prolyl hydroxylases (PHD), and hypoxia-inducible factors (HIFs), which together regulate expression of downstream genes involved in oxygen homeostasis. In recent years, it has become increasingly clear that oxygen regulatory mechanisms are intertwined with cellular iron-sensing pathways. Key members of these networks such as prolyl-hydroxylases, E3 ubiquitin ligase adaptor protein FBXL5, iron regulatory proteins (IRPs), and Fe-S cluster proteins require both iron and oxygen for their optimal function and/or are tightly regulated by intracellular concentrations of these molecules. Monitoring how protein interactomes are remodeled as a function of intracellular oxygen and iron levels gives insights into the nature and dynamics of these pathways. We have recently described an oxygen-sensitive interaction between FBXL5 and the cytoplasmic Fe-S cluster targeting complex (CIA targeting complex) with implications in the FBXL5-dependent regulation of IRPs. Based on this work, we present a protocol describing the induction and maintenance of hypoxia in mammalian cell cultures and a mass-spectrometry-based proteomics approach aimed at interrogating changes in interactome of key proteins as a function of intracellular oxygen and iron levels. These methods are widely applicable to understanding the dynamics of iron and oxygen signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Samanta D, Prabhakar NR, Semenza GL (2017) Systems biology of oxygen homeostasis. Wiley Interdiscip Rev Syst Biol Med 9(4). https://doi.org/10.1002/wsbm.1382

  2. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275

    Article  CAS  PubMed  Google Scholar 

  3. Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A 90(9):4304–4308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30(4):393–402

    Article  CAS  PubMed  Google Scholar 

  5. Wilson JW, Shakir D, Batie M, Frost M, Rocha S (2020) Oxygen-sensing mechanisms in cells. FEBS J 287:3888–3906

    Article  CAS  PubMed  Google Scholar 

  6. Vashisht AA, Zumbrennen KB, Huang X, Powers DN, Durazo A, Sun D, Bhaskaran N, Persson A, Uhlen M, Sangfelt O, Spruck C, Leibold EA, Wohlschlegel JA (2009) Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science 326(5953):718–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Salahudeen AA, Thompson JW, Ruiz JC, Ma HW, Kinch LN, Li Q, Grishin NV, Bruick RK (2009) An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science (New York, N.Y.) 326(5953):722–726

    Article  CAS  PubMed  Google Scholar 

  8. Chollangi S, Thompson JW, Ruiz JC, Gardner KH, Bruick RK (2012) Hemerythrin-like domain within F-box and leucine-rich repeat protein 5 (FBXL5) communicates cellular iron and oxygen availability by distinct mechanisms. J Biol Chem 287(28):23710–23717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mayank AK, Pandey V, Vashisht AA, Barshop WD, Rayatpisheh S, Sharma T, Haque T, Powers DN, Wohlschlegel JA (2019) An oxygen-dependent interaction between FBXL5 and the CIA-targeting complex regulates iron homeostasis. Mol Cell 75(2):382–393.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yee Koh M, Spivak-Kroizman TR, Powis G (2008) HIF-1 regulation: not so easy come, easy go. Trends Biochem Sci 33(11):526–534

    Article  PubMed  Google Scholar 

  11. Jami-Alahmadi Y, Pandey V, Mayank AK, Wohlschlegel JA (2021) A robust method for packing high resolution C18 RP-nano-HPLC columns. J Vis Exp 171:e62380

    Google Scholar 

  12. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  13. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805

    Article  CAS  PubMed  Google Scholar 

  14. Teo G, Liu G, Zhang J, Nesvizhskii AI, Gingras AC, Choi H (2014) SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software. J Proteome 100:37–43

    Article  CAS  Google Scholar 

  15. Jimenez-Morales D, Rosa Campos A, Von Dollen J, Krogan N, Swaney D (2021) artMS: analytical R tools for mass spectrometry. R Package Version 1.12.0. http://artms.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Wohlschlegel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pandey, V., Mayank, A.K., Wohlschlegel, J.A. (2023). Analyzing Iron and Oxygen-Regulated Protein Complex Formation Using Proteomic Mass Spectrometry. In: Weinert, E.E. (eds) Oxygen Sensing. Methods in Molecular Biology, vol 2648. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3080-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3080-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3079-2

  • Online ISBN: 978-1-0716-3080-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics