Skip to main content

Time-Lapse Imaging of Inflammasome-Dependent Cell Death and Extrusion in Enteroid-Derived Intestinal Epithelial Monolayers

  • Protocol
  • First Online:
Pyroptosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2641))

Abstract

Inflammasome-induced cell death is an epithelium-intrinsic innate immune response to pathogenic onslaught on epithelial barriers, caused by invasive microbes such as Salmonella Typhimurium (S.Tm). Pattern recognition receptors detect pathogen- or damage-associated ligands and elicit inflammasome formation. This ultimately restricts bacterial loads within the epithelium, limits breaching of the barrier, and prevents detrimental inflammatory tissue damage. Pathogen restriction is mediated via the specific extrusion of dying intestinal epithelial cells (IECs) from the epithelial tissue, accompanied by membrane permeabilization at some stage of the process. These inflammasome-dependent mechanisms can be studied in real time in intestinal epithelial organoids (enteroids), which allow imaging at high temporal and spatial resolution in a stable focal plane when seeded as 2D monolayers. The protocols described here involve the establishment of murine and human enteroid-derived monolayers, as well as time-lapse imaging of IEC extrusion and membrane permeabilization following inflammasome activation by S.Tm infection. The protocols can be adapted to also study other pathogenic insults or combined with genetic and pharmacological manipulation of the involved pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Churchill MJ, Mitchell PS, Rauch I (2022) Epithelial Pyroptosis in host defense. J Mol Biol 434:167278. https://doi.org/10.1016/J.JMB.2021.167278

    Article  CAS  PubMed  Google Scholar 

  2. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16:407–420

    Article  CAS  PubMed  Google Scholar 

  3. Rayamajhi M, Zak DE, Chavarria-Smith J et al (2013) Cutting edge: mouse NAIP1 detects the type III secretion system needle protein. J Immunol 191:3986–3989. https://doi.org/10.4049/jimmunol.1301549

    Article  CAS  PubMed  Google Scholar 

  4. Yang J, Zhao Y, Shi J, Shao F (2013) Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci U S A 110:14408–14413. https://doi.org/10.1073/pnas.1306376110

    Article  PubMed  PubMed Central  Google Scholar 

  5. Miao EA, Mao DP, Yudkovsky N et al (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A 107:3076–3080. https://doi.org/10.1073/pnas.0913087107

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477:592–597. https://doi.org/10.1038/nature10394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao Y, Yang J, Shi J et al (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–602. https://doi.org/10.1038/nature10510

    Article  CAS  PubMed  Google Scholar 

  8. Kayagaki N, Warming S, Lamkanfi M et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121. https://doi.org/10.1038/nature10558

    Article  CAS  PubMed  Google Scholar 

  9. Kayagaki N, Wong MT, Stowe IB et al (2013) Noncanonical Inflammasome activation by intracellular LPS independent of TLR4. Science 341:1246–1249. https://doi.org/10.1126/science.1240248

    Article  CAS  PubMed  Google Scholar 

  10. Knodler LA, Crowley SM, Sham HP et al (2014) Noncanonical Inflammasome activation of Caspase-4/Caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16:249–256. https://doi.org/10.1016/j.chom.2014.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Birchenough GMH, Nyström EEL, Johansson MEV, Hansson GC (2016) A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science 352:1535–1542. https://doi.org/10.1126/science.aaf7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sateriale A, Gullicksrud JA, Engiles JB et al (2021) The intestinal parasite cryptosporidium is controlled by an enterocyte intrinsic inflammasome that depends on NLRP6. Proc Natl Acad Sci U S A 118. https://doi.org/10.1073/pnas.2007807118

  13. Zhu S, Ding S, Wang P et al (2017) Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature 546:667–670. https://doi.org/10.1038/nature22967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holly MK, Han X, Zhao EJ et al (2020) Salmonella enterica infection of murine and human Enteroid-derived monolayers elicits differential activation of epithelium-intrinsic Inflammasomes. Infect Immun 88. https://doi.org/10.1128/IAI.00017-20

  15. Rauch I, Deets KA, Ji DX et al (2017) NAIP-NLRC4 Inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of Caspase-1 and -8. Immunity 46:649–659. https://doi.org/10.1016/j.immuni.2017.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sellin ME, Müller AA, Felmy B et al (2014) Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict salmonella replication in the intestinal mucosa. Cell Host Microbe 16:237–248. https://doi.org/10.1016/j.chom.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  17. Nordlander S, Pott J, Maloy KJ (2014) NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen. Mucosal Immunol 7:775–785. https://doi.org/10.1038/mi.2013.95

    Article  CAS  PubMed  Google Scholar 

  18. Hausmann A, Böck D, Geiser P et al (2020) Intestinal epithelial NAIP/NLRC4 restricts systemic dissemination of the adapted pathogen salmonella typhimurium due to site-specific bacterial PAMP expression. Mucosal Immunol 13:530–544. https://doi.org/10.1038/s41385-019-0247-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fattinger SA, Geiser P, Samperio Ventayol P et al (2021) Epithelium-autonomous NAIP/NLRC4 prevents TNF-driven inflammatory destruction of the gut epithelial barrier in salmonella-infected mice. Mucosal Immunol 14:615–629. https://doi.org/10.1038/s41385-021-00381-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van Opdenbosch N, Van Gorp H, Verdonckt M et al (2017) Caspase-1 engagement and TLR-induced c-FLIP expression suppress ASC/Caspase-8-dependent apoptosis by Inflammasome sensors NLRP1b and NLRC4. Cell Rep 21:3427–3444. https://doi.org/10.1016/J.CELREP.2017.11.088

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hefele M, Stolzer I, Ruder B et al (2018) Intestinal epithelial Caspase-8 signaling is essential to prevent necroptosis during salmonella typhimurium induced enteritis. Mucosal Immunol 11:1191–1202. https://doi.org/10.1038/s41385-018-0011-x

    Article  CAS  PubMed  Google Scholar 

  22. He W, Wan H, Hu L et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25:1285–1298. https://doi.org/10.1038/cr.2015.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kayagaki N, Stowe IB, Lee BL et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–671. https://doi.org/10.1038/nature15541

    Article  CAS  PubMed  Google Scholar 

  24. Shi J, Zhao Y, Wang K et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665. https://doi.org/10.1038/nature15514

    Article  CAS  PubMed  Google Scholar 

  25. Ding J, Wang K, Liu W et al (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:111–116. https://doi.org/10.1038/nature18590

    Article  CAS  PubMed  Google Scholar 

  26. Samperio Ventayol P, Geiser P, Di Martino ML et al (2021) Bacterial detection by NAIP/NLRC4 elicits prompt contractions of intestinal epithelial cell layers. Proc Natl Acad Sci 118. https://doi.org/10.1073/pnas.2013963118

  27. Sato T, Vries RGJ, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265. https://doi.org/10.1038/nature07935

    Article  CAS  PubMed  Google Scholar 

  28. Sato T, Stange DE, Ferrante M et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141:1762–1772. https://doi.org/10.1053/j.gastro.2011.07.050

    Article  CAS  PubMed  Google Scholar 

  29. Jung P, Sato T, Merlos-Suárez A et al (2011) Isolation and in vitro expansion of human colonic stem cells. Nat Med 17:1225–1227. https://doi.org/10.1038/nm.2470

    Article  CAS  PubMed  Google Scholar 

  30. Sugimoto S, Sato T (2017) Establishment of 3D intestinal organoid cultures from intestinal stem cells. Methods Mol Biol 1612:97–105. https://doi.org/10.1007/978-1-4939-7021-6_7

    Article  CAS  PubMed  Google Scholar 

  31. Miyoshi H, Stappenbeck TS (2013) In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat Protoc 8:2471–2482. https://doi.org/10.1038/nprot.2013.153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hausmann A, Russo G, Grossmann J et al (2020) Germ-free and microbiota-associated mice yield small intestinal epithelial organoids with equivalent and robust transcriptome/proteome expression phenotypes. Cell Microbiol 22. https://doi.org/10.1111/cmi.13191

  33. Hinman SS, Wang Y, Kim R, Allbritton NL (2021) In vitro generation of self-renewing human intestinal epithelia over planar and shaped collagen hydrogels. Nat Protoc 16:352–382. https://doi.org/10.1038/s41596-020-00419-8

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Gunasekara DB, Reed MI et al (2017) A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials 128:44–55. https://doi.org/10.1016/J.BIOMATERIALS.2017.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kozuka K, He Y, Koo-McCoy S et al (2017) Development and characterization of a human and mouse intestinal epithelial cell monolayer platform. Stem Cell Reports 9:1976–1990. https://doi.org/10.1016/j.stemcr.2017.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van Rijn JM, Eriksson J, Grüttner J et al (2022) High-definition DIC imaging uncovers transient stages of pathogen infection cycles on the surface of human adult stem cell-derived intestinal epithelium. MBio 13. https://doi.org/10.1128/MBIO.00022-22

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael E. Sellin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Geiser, P., van Rijn, J.M., Sellin, M.E. (2023). Time-Lapse Imaging of Inflammasome-Dependent Cell Death and Extrusion in Enteroid-Derived Intestinal Epithelial Monolayers. In: Fink, S.L. (eds) Pyroptosis. Methods in Molecular Biology, vol 2641. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3040-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3040-2_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3039-6

  • Online ISBN: 978-1-0716-3040-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics