Skip to main content

In Vitro Maturation of Human Pluripotent Stem Cell-Derived Myotubes

  • Protocol
  • First Online:
Skeletal Muscle Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2640))

Abstract

Pluripotent stem cells have a multitude of potential applications in the areas of disease modeling, drug screening, and cell-based therapies for genetic diseases, including muscular dystrophies. The advent of induced pluripotent stem cell technology allows for the facile derivation of disease-specific pluripotent stem cells for any given patient. Targeted in vitro differentiation of pluripotent stem cells into the muscle lineage is a key step to enable all these applications. Transgene-based differentiation using conditional expression of the transcription factor PAX7 leads to the efficient derivation of an expandable and homogeneous population of myogenic progenitors suitable for both in vitro and in vivo applications. Here, we describe an optimized protocol for the derivation and expansion of myogenic progenitors from pluripotent stem cells using conditional expression of PAX7. Importantly, we further describe an optimized procedure for the terminal differentiation of myogenic progenitors into more mature myotubes, which are better suited for in vitro disease modeling and drug screening studies.

Ricardo Mondragon-Gonzalez and Sridhar Selvaraj contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mercuri E, Bonnemann CG, Muntoni F (2019) Muscular dystrophies. Lancet 394(10213):2025–2038

    Article  PubMed  Google Scholar 

  2. Ng R, Banks GB, Hall JK et al (2012) Animal models of muscular dystrophy. Prog Mol Biol Transl Sci 105:83–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  6. Selvaraj S, Dhoke NR, Kiley J et al (2019) Gene correction of LGMD2A patient-specific iPSCs for the development of targeted autologous cell therapy. Mol Ther 27(12):2147–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Young CS, Hicks MR, Ermolova NV et al (2016) A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores Dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 18(4):533–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Turan S, Farruggio AP, Srifa W et al (2016) Precise correction of disease mutations in induced pluripotent stem cells derived from patients with limb girdle muscular dystrophy. Mol Ther 24(4):685–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Choi IY, Lim H, Estrellas K et al (2016) Concordant but varied phenotypes among Duchenne muscular dystrophy patient-specific myoblasts derived using a human iPSC-based model. Cell Rep 15(10):2301–2312

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Hao L, Wang H et al (2018) Therapeutic genome editing for myotonic dystrophy type 1 using CRISPR/Cas9. Mol Ther 26(11):2617–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goudenege S, Lebel C, Huot NB et al (2012) Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse with existing muscle fibers following transplantation. Mol Ther 20(11):2153–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Darabi R, Arpke RW, Irion S et al (2012) Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10(5):610–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tedesco FS, Gerli MF, Perani L et al (2012) Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med 4(140):140ra89

    Article  PubMed  Google Scholar 

  14. Shelton M, Metz J, Liu J et al (2014) Derivation and expansion of PAX7-positive muscle progenitors from human and mouse embryonic stem cells. Stem Cell Reports 3(3):516–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chal J, Oginuma M, Al Tanoury Z et al (2015) Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat Biotechnol 33(9):962–969

    Article  CAS  PubMed  Google Scholar 

  16. Hicks MR, Hiserodt J, Paras K et al (2018) ERBB3 and NGFR mark a distinct skeletal muscle progenitor cell in human development and hPSCs. Nat Cell Biol 20(1):46–57

    Article  CAS  PubMed  Google Scholar 

  17. Wu J, Matthias N, Lo J et al (2018) A myogenic double-reporter human pluripotent stem cell line allows prospective isolation of skeletal muscle progenitors. Cell Rep 25(7):1966–81 e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Azzag K, Ortiz-Cordero C, Oliveira NAJ et al (2020) Efficient engraftment of pluripotent stem cell-derived myogenic progenitors in a novel immunodeficient mouse model of limb girdle muscular dystrophy 2I. Skelet Muscle 10(1):10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schiaffino S, Rossi AC, Smerdu V (2015) Developmental myosins: expression patterns and functional significance. Skelet Muscle 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  20. Abdelalim EM, Emara MM (2015) Advances and challenges in the differentiation of pluripotent stem cells into pancreatic beta cells. World J Stem Cells 7(1):174–181

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aigha I (2016) Raynaud C (2016) maturation of pluripotent stem cell derived cardiomyocytes: the new challenge. Glob Cardiol Sci Pract 1:e201606

    Google Scholar 

  22. Chen C, Soto-Gutierrez A, Baptista PM et al (2018) Biotechnology challenges to in vitro maturation of hepatic stem cells. Gastroenterology 154(5):1258–1272

    Article  PubMed  Google Scholar 

  23. Jiwlawat N, Lynch E, Jeffrey J et al (2018) Current Progress and challenges for skeletal muscle differentiation from human pluripotent stem cells using transgene-free approaches. Stem Cells Int 2018:6241681

    Article  PubMed  PubMed Central  Google Scholar 

  24. Selvaraj S, Mondragon-Gonzalez R, Xu B et al (2019) Screening identifies small molecules that enhance the maturation of human pluripotent stem cell-derived myotubes. elife 8

    Google Scholar 

  25. Magli A, Incitti T, Kiley J et al (2017) PAX7 targets, CD54, integrin alpha9beta1, and SDC2, allow isolation of human ESC/iPSC-derived myogenic progenitors. Cell Rep 19(13):2867–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01 AR071439 and AR055299 (R.C.R.P.). We thank James Kiley for helpful commentaries on this protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita C. R. Perlingeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mondragon-Gonzalez, R., Selvaraj, S., Perlingeiro, R.C.R. (2023). In Vitro Maturation of Human Pluripotent Stem Cell-Derived Myotubes. In: Asakura, A. (eds) Skeletal Muscle Stem Cells. Methods in Molecular Biology, vol 2640. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3036-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3036-5_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3035-8

  • Online ISBN: 978-1-0716-3036-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics