Skip to main content

Drosophila Laser Axotomy Injury Model to Investigate RNA Repair and Splicing in Axon Regeneration

  • Protocol
  • First Online:
Axon Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2636))

Abstract

The limited axon regeneration capacity of mature neurons often leads to insufficient functional recovery after damage to the central nervous system (CNS). To promote CNS nerve repair, there is an urgent need to understand the regeneration machinery in order to develop effective clinical therapies. To this aim, we developed a Drosophila sensory neuron injury model and the accompanying behavioral assay to examine axon regeneration competence and functional recovery after injury in the peripheral and central nervous systems. Specifically, we used a two-photon laser to induce axotomy and performed live imaging to assess axon regeneration, combined with the analysis of the thermonociceptive behavior as a readout of functional recovery. Using this model, we found that the RNA 3′-terminal phosphate cyclase (Rtca), which acts as a regulator for RNA repair and splicing, responds to injury-induced cellular stress and impedes axon regeneration after axon breakage. Here we describe how we utilize our Drosophila model to assess the role of Rtca during neuroregeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dredge BK, Polydorides AD, Darnell RB (2001) The splice of life: alternative splicing and neurological disease. Nat Rev Neurosci 2(1):43–50. https://doi.org/10.1038/35049061

    Article  CAS  PubMed  Google Scholar 

  2. Matlin AJ, Clark F, Smith CW (2005) Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6(5):386–398. https://doi.org/10.1038/nrm1645

    Article  CAS  PubMed  Google Scholar 

  3. Lareau LF, Inada M, Green RE, Wengrod JC, Brenner SE (2007) Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446(7138):926–929. https://doi.org/10.1038/nature05676

    Article  CAS  PubMed  Google Scholar 

  4. Zheng S (2020) Alternative splicing programming of axon formation. Wiley Interdiscip Rev RNA 11(4):e1585. https://doi.org/10.1002/wrna.1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Su CH DD, Tarn WY (2018) Alternative splicing in neurogenesis and brain development. Front Mol Biosci 5:12. https://doi.org/10.3389/fmolb.2018.00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mao S, Zhang S, Zhou Z, Shi X, Huang T, Feng W, Yao C, Gu X, Yu B (2018) Alternative RNA splicing associated with axon regeneration after rat peripheral nerve injury. Exp Neurol 308:80–89. https://doi.org/10.1016/j.expneurol.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  7. Raj B, Blencowe BJ (2015) Alternative splicing in the mammalian nervous system: recent insights into mechanisms and functional roles. Neuron 87(1):14–27. https://doi.org/10.1016/j.neuron.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  8. Takechi H, Hosokawa N, Hirayoshi K, Nagata K (1994) Alternative 5′ splice site selection induced by heat shock. Mol Cell Biol 14(1):567–575. https://doi.org/10.1128/mcb.14.1.567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chandler DS, Singh RK, Caldwell LC, Bitler JL, Lozano G (2006) Genotoxic stress induces coordinately regulated alternative splicing of the p53 modulators MDM2 and MDM4. Cancer Res 66(19):9502–9508. https://doi.org/10.1158/0008-5472.CAN-05-4271

    Article  CAS  PubMed  Google Scholar 

  10. Meshorer E, Erb C, Gazit R, Pavlovsky L, Kaufer D, Friedman A, Glick D, Ben-Arie N, Soreq H (2002) Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity. Science 295(5554):508–512. https://doi.org/10.1126/science.1066752

    Article  CAS  PubMed  Google Scholar 

  11. Hu Y, Park KK, Yang L, Wei X, Yang Q, Cho KS, Thielen P, Lee AH, Cartoni R, Glimcher LH, Chen DF, He Z (2012) Differential effects of unfolded protein response pathways on axon injury-induced death of retinal ganglion cells. Neuron 73(3):445–452. https://doi.org/10.1016/j.neuron.2011.11.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen L, Liu Z, Zhou B, Wei C, Zhou Y, Rosenfeld MG, Fu XD, Chisholm AD, Jin Y (2016) CELF RNA binding proteins promote axon regeneration in C. elegans and mammals through alternative splicing of Syntaxins. eLife 5. https://doi.org/10.7554/eLife.16072

  13. Kosmaczewski SG, Han SM, Han B, Irving Meyer B, Baig HS, Athar W, Lin-Moore AT, Koelle MR, Hammarlund M (2015) RNA ligation in neurons by RtcB inhibits axon regeneration. Proc Natl Acad Sci U S A 112(27):8451–8456. https://doi.org/10.1073/pnas.1502948112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song Y, Sretavan D, Salegio EA, Berg J, Huang X, Cheng T, Xiong X, Meltzer S, Han C, Nguyen TT, Bresnahan JC, Beattie MS, Jan LY, Jan YN (2015) Regulation of axon regeneration by the RNA repair and splicing pathway. Nat Neurosci 18(6):817–825. https://doi.org/10.1038/nn.4019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vargas EJM, Matamoros AJ, Qiu J, Jan CH, Wang Q, Gorczyca D, Han TW, Weissman JS, Jan YN, Banerjee S, Song Y (2020) The microtubule regulator ringer functions downstream from the RNA repair/splicing pathway to promote axon regeneration. Genes Dev 34(3–4):194–208. https://doi.org/10.1101/gad.331330.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song Y, Li D, Farrelly O, Miles L, Li F, Kim SE, Lo TY, Wang F, Li T, Thompson-Peer KL, Gong J, Murthy SE, Coste B, Yakubovich N, Patapoutian A, Xiang Y, Rompolas P, Jan LY, Jan YN (2019) The mechanosensitive ion channel Piezo inhibits axon regeneration. Neuron 102(2):373–389 e376. https://doi.org/10.1016/j.neuron.2019.01.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Song Y, Ori-McKenney KM, Zheng Y, Han C, Jan LY, Jan YN (2012) Regeneration of Drosophila sensory neuron axons and dendrites is regulated by the Akt pathway involving Pten and microRNA bantam. Genes Dev 26(14):1612–1625. https://doi.org/10.1101/gad.193243.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li D, Li F, Guttipatti P, Song Y (2018) A Drosophila in vivo injury model for studying neuroregeneration in the peripheral and central nervous system. J Vis Exp 135. https://doi.org/10.3791/57557

  19. Grueber WB, Jan LY, Jan YN (2002) Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 129(12):2867–2878

    Article  CAS  PubMed  Google Scholar 

  20. Shimono K, Fujimoto A, Tsuyama T, Yamamoto-Kochi M, Sato M, Hattori Y, Sugimura K, Usui T, Kimura K, Uemura T (2009) Multidendritic sensory neurons in the adult Drosophila abdomen: origins, dendritic morphology, and segment- and age-dependent programmed cell death. Neural Dev 4:37. https://doi.org/10.1186/1749-8104-4-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han C, Jan LY, Jan YN (2011) Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron-glia interactions in Drosophila. Proc Natl Acad Sci U S A 108(23):9673–9678. https://doi.org/10.1073/pnas.1106386108

    Article  PubMed  PubMed Central  Google Scholar 

  22. Grueber WB, Jan LY, Jan YN (2003) Different levels of the homeodomain protein cut regulate distinct dendrite branching patterns of Drosophila multidendritic neurons. Cell 112(6):805–818. https://doi.org/10.1016/s0092-8674(03)00160-0

    Article  CAS  PubMed  Google Scholar 

  23. Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN (2010) Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468(7326):921–926. https://doi.org/10.1038/nature09576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Petersen LK, Stowers RS (2011) A Gateway MultiSite recombination cloning toolkit. PLoS One 6(9):e24531. https://doi.org/10.1371/journal.pone.0024531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li F, Sami A, Noristani HN, Slattery K, Qiu J, Groves T, Wang S, Veerasammy K, Chen YX, Morales J, Haynes P, Sehgal A, He Y, Li S, Song Y (2020) Glial metabolic rewiring promotes axon regeneration and functional recovery in the central nervous system. Cell Metab 32(5):767–785 e767. https://doi.org/10.1016/j.cmet.2020.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank members of the Song lab for helpful discussions. Y.S. is a recipient of the National Institute of Neurological Disorders and Stroke (NINDS) Pathway to Independence Award. This work was supported by an IDDRC New Program Development Award (CHOP/Penn), an NINDS K99/R00 award (R00NS088211), an NIH grant (1R01NS107392), and a Craig H. Neilsen Foundation research grant to Y.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanquan Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, Q., Trombley, S., Rashidzada, M., Song, Y. (2023). Drosophila Laser Axotomy Injury Model to Investigate RNA Repair and Splicing in Axon Regeneration. In: Udvadia, A.J., Antczak, J.B. (eds) Axon Regeneration. Methods in Molecular Biology, vol 2636. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3012-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3012-9_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3011-2

  • Online ISBN: 978-1-0716-3012-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics