Skip to main content

Easy Not Easy: Comparative Modeling with High-Sequence Identity Templates

  • Protocol
  • First Online:
Homology Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2627))

  • 544 Accesses

Abstract

Homology modeling is the most common technique to build structural models of a target protein based on the structure of proteins with high-sequence identity and available high-resolution structures. This technique is based on the idea that protein structure shows fewer changes than sequence through evolution. While in this scenario single mutations would minimally perturb the structure, experimental evidence shows otherwise: proteins with high conformational diversity impose a limit of the paradigm of comparative modeling as the same protein sequence can adopt dissimilar three-dimensional structures. These cases present challenges for modeling; at first glance, they may seem to be easy cases, but they have a complexity that is not evident at the sequence level. In this chapter, we address the following questions: Why should we care about conformational diversity? How to consider conformational diversity when doing template-based modeling in a practical way?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  2. Consortium TU, The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515

    Article  Google Scholar 

  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dawson NL, Lewis TE, Das S, Lees JG, Lee D, Ashford P, Orengo CA, Sillitoe I (2017) CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res 45:D289–D295

    Article  CAS  PubMed  Google Scholar 

  5. Andreeva A, Kulesha E, Gough J, Murzin AG (2020) The SCOP database in 2020: expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Res 48:D376–D382

    Article  CAS  PubMed  Google Scholar 

  6. Marino-Buslje C, Monzon AM, Zea DJ, Fornasari MS, Parisi G (2017) On the dynamical incompleteness of the Protein Data Bank. Brief Bioinform 20:356–359

    Article  Google Scholar 

  7. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  CAS  PubMed  Google Scholar 

  8. Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5:789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Monzon AM, Fornasari MS, Zea DJ, Parisi G (2019) Exploring protein conformational diversity. Methods Mol Biol 1851:353–365

    Article  CAS  PubMed  Google Scholar 

  10. Salahuddin P, Distributed Information Sub-Centre (DISC), Interdisciplinary Biotechnology Unit, Aligarh Muslim University (A. M. U. ), Aligarh, India (2015) Protein folding, misfolding, aggregation and amyloid formation: mechanisms of Aβ oligomer mediated toxicities. J Biochem Mol Biol Res 1:36–45

    Article  Google Scholar 

  11. Lin J-C, Liu H-L (2006) Protein conformational diseases: from mechanisms to drug designs. Curr Drug Discov Technol 3:145–153

    Article  CAS  PubMed  Google Scholar 

  12. Ellisdon AM, Bottomley SP (2004) The role of protein misfolding in the pathogenesis of human diseases. IUBMB Life 56:119–123

    Article  CAS  PubMed  Google Scholar 

  13. Sweeney P, Park H, Baumann M et al (2017) Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener 6:6

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tress M, Tai C-H, Wang G, Ezkurdia I, López G, Valencia A, Lee B, Dunbrack RL Jr (2005) Domain definition and target classification for CASP6. Proteins 61(Suppl 7):8–18

    Article  CAS  PubMed  Google Scholar 

  15. Kinch LN, Kryshtafovych A, Monastyrskyy B, Grishin NV (2019) CASP13 target classification into tertiary structure prediction categories. Proteins 87:1021–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yassine W, Taib N, Federman S et al (2009) Reversible transition between alpha-helix and beta-sheet conformation of a transmembrane domain. Biochim Biophys Acta 1788:1722. https://doi.org/10.1016/j.bbamem.2009.05.014

    Article  CAS  PubMed  Google Scholar 

  17. Koshland DE (1998) Conformational changes: how small is big enough? Nat Med 4:1112–1114

    Article  CAS  PubMed  Google Scholar 

  18. Mesecar AD, Stoddard BL, Koshland DE Jr (1997) Orbital steering in the catalytic power of enzymes: small structural changes with large catalytic consequences. Science 277:202–206

    Article  CAS  PubMed  Google Scholar 

  19. Monzon AM, Zea DJ, Fornasari MS, Saldaño TE, Fernandez-Alberti S, Tosatto SCE, Parisi G (2017) Conformational diversity analysis reveals three functional mechanisms in proteins. PLoS Comput Biol 13:e1005398

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jurcik A, Bednar D, Byska J et al (2018) CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics 34:3586–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE (2018) UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci 27:14–25

    Article  CAS  PubMed  Google Scholar 

  22. Olechnovič K, Monastyrskyy B, Kryshtafovych A, Venclovas Č (2019) Comparative analysis of methods for evaluation of protein models against native structures. Bioinformatics 35:937–944

    Article  PubMed  Google Scholar 

  23. Lupyan D, Leo-Macias A, Ortiz AR (2005) A new progressive-iterative algorithm for multiple structure alignment. Bioinformatics 21:3255–3263

    Article  CAS  PubMed  Google Scholar 

  24. Kabsch W (1976) A solution for the best rotation to relate two sets of vectors. Acta Crystallogr A 32:922–923

    Article  Google Scholar 

  25. Kabsch W (1978) A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallogr A 34:827–828

    Article  Google Scholar 

  26. Burra PV, Zhang Y, Godzik A, Stec B (2009) Global distribution of conformational states derived from redundant models in the PDB points to non-uniqueness of the protein structure. Proc Natl Acad Sci U S A 106:10505–10510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sikic K, Tomic S, Carugo O (2010) Systematic comparison of crystal and NMR protein structures deposited in the protein data bank. Open Biochem J 4:83–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kosloff M, Kolodny R (2008) Sequence-similar, structure-dissimilar protein pairs in the PDB. Proteins Struct Funct Bioinf 71:891–902

    Article  CAS  Google Scholar 

  29. Tramontano A, Morea V (2004) Assessment of homology-based predictions in CASP5. Proteins Struct Funct Bioinf 55:782–782

    Article  CAS  Google Scholar 

  30. Rataj K, Witek J, Mordalski S, Kosciolek T, Bojarski AJ (2014) Impact of template choice on homology model efficiency in virtual screening. J Chem Inf Model 54:1661–1668

    Article  CAS  PubMed  Google Scholar 

  31. Parisi G, Zea DJ, Monzon AM, Marino-Buslje C (2015) Conformational diversity and the emergence of sequence signatures during evolution. Curr Opin Struct Biol 32:58–65

    Article  CAS  PubMed  Google Scholar 

  32. Ingram VM (1957) Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Nature 180:326–328

    Article  CAS  PubMed  Google Scholar 

  33. Hunt JA, Ingram VM (1959) A terminal peptide sequence of human haemoglobin? Nature 184(Suppl 9):640–641

    Article  CAS  Google Scholar 

  34. Molina-Vila MA, Nabau-Moretó N, Tornador C, Sabnis AJ, Rosell R, Estivill X, Bivona TG, Marino-Buslje C (2014) Activating mutations cluster in the “molecular brake” regions of protein kinases and do not associate with conserved or catalytic residues. Hum Mutat 35:318–328

    Article  CAS  PubMed  Google Scholar 

  35. Huang Y-WA, Zhou B, Wernig M, Südhof TC (2017) ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ secretion. Cell 168:427–441.e21

    Article  CAS  PubMed  Google Scholar 

  36. Illergård K, Ardell DH, Elofsson A (2009) Structure is three to ten times more conserved than sequence—a study of structural response in protein cores. Proteins Struct Funct Bioinf 77:499–508

    Article  Google Scholar 

  37. Waterhouse A, Bertoni M, Bienert S et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sander C, Schneider R (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9:56–68

    Article  CAS  PubMed  Google Scholar 

  39. El-Gebali S, Mistry J, Bateman A et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432

    Article  CAS  PubMed  Google Scholar 

  40. Zea DJ, Monzon AM, Parisi G, Marino-Buslje C (2018) How is structural divergence related to evolutionary information? Mol Phylogenet Evol 127:859–866

    Article  PubMed  Google Scholar 

  41. Vetrivel I, de Brevern AG, Cadet F, Srinivasan N, Offmann B (2019) Structural variations within proteins can be as large as variations observed across their homologues. Biochimie 167:162–170

    Article  CAS  PubMed  Google Scholar 

  42. Monzon AM, Zea DJ, Marino-Buslje C, Parisi G (2017) Homology modeling in a dynamical world. Protein Sci 26:2195–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zea DJ, Anfossi D, Nielsen M, Marino-Buslje C (2017) MIToS.jl: mutual information tools for protein sequence analysis in the Julia language. Bioinformatics 33:564–565

    Article  CAS  PubMed  Google Scholar 

  44. Elber R, Karplus M (1987) Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin. Science 235:318–321

    Article  CAS  PubMed  Google Scholar 

  45. Narayanan C, Bernard DN, Doucet N (2016) Role of conformational motions in enzyme function: selected methodologies and case studies. Catalysts. https://doi.org/10.3390/catal6060081

  46. Saldaño TE, Freixas VM, Tosatto SCE, Parisi G, Fernandez-Alberti S (2020) Exploring conformational space with thermal fluctuations obtained by normal-mode analysis. J Chem Inf Model 60:3068. https://doi.org/10.1021/acs.jcim.9b01136

    Article  CAS  PubMed  Google Scholar 

  47. Bienert S, Waterhouse A, de Beer TAP, Tauriello G, Studer G, Bordoli L, Schwede T (2017) The SWISS-MODEL repository—new features and functionality. Nucleic Acids Res 45:D313–D319

    Article  CAS  PubMed  Google Scholar 

  48. Narunsky A, Nepomnyachiy S, Ashkenazy H, Kolodny R, Ben-Tal N (2015) ConTemplate suggests possible alternative conformations for a query protein of known structure. Structure 23:2162–2170

    Article  CAS  PubMed  Google Scholar 

  49. Palopoli N, Monzon AM, Parisi G, Fornasari MS (2016) Addressing the role of conformational diversity in protein structure prediction. PLoS One 11:e0154923

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure template quality. Proteins 57:702–710

    Article  CAS  PubMed  Google Scholar 

  51. Ramachandran GN, Sasisekharan V (1968) Conformation of polypeptides and proteins **The literature survey for this review was completed in September 1967, with the journals which were then available in Madras and the preprinta which the authors had received. ††By the authors’ request, the publishers have left certain matters of usage and spelling in the form in which they wrote them. In: Anfinsen CB, Anson ML, Edsall JT, Richards FM (eds) Advances in protein chemistry. Academic Press, pp 283–437

    Google Scholar 

  52. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283. https://doi.org/10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  53. Zhou AQ, O’Hern CS, Regan L (2011) Revisiting the Ramachandran plot from a new angle. Protein Sci 20:1166–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  CAS  PubMed  Google Scholar 

  55. Gore S, Sanz García E, Hendrickx PMS et al (2017) Validation of structures in the Protein Data Bank. Structure 25:1916–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schrodinger LLC (2010) The PyMOL molecular graphics system Version 1:0

    Google Scholar 

  57. Pettersen EF, Goddard TD, Huang CC (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  58. Léonard S, Joseph AP, Srinivasan N, Gelly J-C, de Brevern AG (2014) mulPBA: an efficient multiple protein structure alignment method based on a structural alphabet. J Biomol Struct Dyn 32:661–668

    Article  PubMed  Google Scholar 

  59. Maiti R, Van Domselaar GH, Zhang H, Wishart DS (2004) SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res 32:W590–W594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jarnot P, Ziemska-Legiecka J, Dobson L et al (2020) PlaToLoCo: the first web meta-server for visualization and annotation of low complexity regions in proteins. Nucleic Acids Res 48:W77. https://doi.org/10.1093/nar/gkaa339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Potenza E, Di Domenico T, Walsh I, Tosatto SCE (2015) MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic Acids Res 43:D315–D320

    Article  CAS  PubMed  Google Scholar 

  62. Mészáros B, Erdos G, Dosztányi Z (2018) IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res 46:W329–W337

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Marino-Buslje .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zea, D.J., Teppa, E., Marino-Buslje, C. (2023). Easy Not Easy: Comparative Modeling with High-Sequence Identity Templates. In: Filipek, S. (eds) Homology Modeling. Methods in Molecular Biology, vol 2627. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2974-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2974-1_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2973-4

  • Online ISBN: 978-1-0716-2974-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics