Skip to main content

Homology Modeling of Transporter Proteins

  • Protocol
  • First Online:
Homology Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2627))

Abstract

Membrane transporter proteins are divided into channels/pores and carriers and constitute protein families of physiological and pharmacological importance. Several presently used therapeutic compounds elucidate their effects by targeting membrane transporter proteins, including anti-arrhythmic, anesthetic, antidepressant, anxiolytic and diuretic drugs. The lack of three-dimensional structures of human transporters hampers experimental studies and drug discovery. In this chapter, the use of homology modeling for generating structural models of membrane transporter proteins is reviewed. The increasing number of atomic resolution structures available as templates, together with improvements in methods and algorithms for sequence alignments, secondary structure predictions, and model generation, in addition to the increase in computational power have increased the applicability of homology modeling for generating structural models of transporter proteins. Different pitfalls and hints for template selection, multiple-sequence alignments, generation and optimization, validation of the models, and the use of transporter homology models for structure-based virtual ligand screening are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saier MH Jr, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G (2016) The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res 44(D1):D372–D379. https://doi.org/10.1093/nar/gkv1103

    Article  CAS  Google Scholar 

  2. Brown D (2017) The discovery of water channels (aquaporins). Ann Nutr Metab 70(Suppl 1):37–42. https://doi.org/10.1159/000463061

    Article  Google Scholar 

  3. Vinothkumar KR, Henderson R (2010) Structures of membrane proteins. Q Rev Biophys 43(1):65–158. https://doi.org/10.1017/S0033583510000041

    Article  CAS  PubMed Central  Google Scholar 

  4. Niitsu A, Heal JW, Fauland K, Thomson AR, Woolfson DN (2017) Membrane-spanning alpha-helical barrels as tractable protein-design targets. Philos Trans R Soc Lond Ser B Biol Sci 372(1726):20160213. https://doi.org/10.1098/rstb.2016.0213

    Article  CAS  Google Scholar 

  5. Liu Y, Wang K (2019) Exploiting the diversity of ion channels: modulation of ion channels for therapeutic indications. Handb Exp Pharmacol 260:187–205. https://doi.org/10.1007/164_2019_333

    Article  CAS  Google Scholar 

  6. Sigel E, Steinmann ME (2012) Structure, function, and modulation of GABA(A) receptors. J Biol Chem 287(48):40224–40231. https://doi.org/10.1074/jbc.R112.386664

    Article  CAS  PubMed Central  Google Scholar 

  7. Masiulis S, Desai R, Uchanski T, Martin IS, Laverty D, Karia D, Malinauskas T, Zivanov J, Pardon E, Kotecha A, Steyaert J, Miller KW, Aricescu AR (2019) GABA(A) receptor signalling mechanisms revealed by structural pharmacology. Nature 565(7740):454–459

    Article  CAS  PubMed Central  Google Scholar 

  8. Laverty D, Desai R, Uchanski T, Masiulis S, Stec WJ, Malinauskas T, Zivanov J, Pardon E, Steyaert J, Miller KW, Aricescu AR (2019) Cryo-EM structure of the human alpha 1 beta 3 gamma 2 GABA(A) receptor in a lipid bilayer. Nature 565(7740):516–520

    Article  CAS  Google Scholar 

  9. Alexander SP, Peters JA, Kelly E, Marrion NV, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA, Collaborators C (2017) The concise guide to PHARMACOLOGY 2017/18: ligand-gated ion channels. Br J Pharmacol 174(Suppl 1):S130–S159. https://doi.org/10.1111/bph.13879

    Article  CAS  PubMed Central  Google Scholar 

  10. Cesar-Razquin A, Snijder B, Frappier-Brinton T, Isserlin R, Gyimesi G, Bai X, Reithmeier RA, Hepworth D, Hediger MA, Edwards AM, Superti-Furga G (2015) A call for systematic research on solute carriers. Cell 162(3):478–487. https://doi.org/10.1016/j.cell.2015.07.022

    Article  CAS  Google Scholar 

  11. Lusvarghi S, Robey RW, Gottesman MM, Ambudkar SV (2020) Multidrug transporters: recent insights from cryo-electron microscopy-derived atomic structures and animal models. F1000Research 9. https://doi.org/10.12688/f1000research.21295.1

  12. Friedmann MH (2008) Facilitated diffusion: channels and carriers. In: Principles and models of biological transport. Springer, pp 111–179

    Chapter  Google Scholar 

  13. Aggarwal S, Mortensen OV (2017) In vitro assays for the functional characterization of the dopamine transporter (DAT). Curr Protoc Pharmacol 79:12.17.11–12.17.21. https://doi.org/10.1002/cpph.33

    Article  CAS  Google Scholar 

  14. Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, Mohr DC, Schatzberg AF (2016) Major depressive disorder. Nat Rev Dis Primers 2:16065. https://doi.org/10.1038/nrdp.2016.65

    Article  Google Scholar 

  15. Takano H (2018) Cognitive function and monoamine neurotransmission in schizophrenia: evidence from positron emission tomography studies. Front Psych 9:228. https://doi.org/10.3389/fpsyt.2018.00228

    Article  Google Scholar 

  16. German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE (2015) Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for disease. Pharmacol Rev 67(4):1005–1024. https://doi.org/10.1124/pr.114.010397

    Article  CAS  PubMed Central  Google Scholar 

  17. Faraone SV (2018) The pharmacology of amphetamine and methylphenidate: relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 87:255–270. https://doi.org/10.1016/j.neubiorev.2018.02.001

    Article  CAS  PubMed Central  Google Scholar 

  18. Rask-Andersen M, Almen MS, Schioth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10(8):579–590. https://doi.org/10.1038/nrd3478

    Article  CAS  Google Scholar 

  19. Goodsell DS, Zardecki C, Di Costanzo L, Duarte JM, Hudson BP, Persikova I, Segura J, Shao C, Voigt M, Westbrook JD, Young JY, Burley SK (2020) RCSB Protein Data Bank: enabling biomedical research and drug discovery. Protein Sci 29(1):52–65. https://doi.org/10.1002/pro.3730

    Article  CAS  Google Scholar 

  20. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. Nature 437(7056):215–223. https://doi.org/10.1038/nature03978

    Article  CAS  Google Scholar 

  21. Singh SK, Piscitelli CL, Yamashita A, Gouaux E (2008) A competitive inhibitor traps LeuT in an open-to-out conformation. Science 322(5908):1655–1661. https://doi.org/10.1126/science.1166777

    Article  CAS  PubMed Central  Google Scholar 

  22. Coleman JA, Green EM, Gouaux E (2016) X-ray structures and mechanism of the human serotonin transporter. Nature 532(7599):334–339. https://doi.org/10.1038/nature17629

    Article  CAS  PubMed Central  Google Scholar 

  23. Garcia-Nafria J, Tate CG (2020) Cryo-electron microscopy: moving beyond X-ray crystal structures for drug receptors and drug development. Annu Rev Pharmacol Toxicol 60:51–71. https://doi.org/10.1146/annurev-pharmtox-010919-023545

    Article  CAS  Google Scholar 

  24. Hediger MA, Clemencon B, Burrier RE, Bruford EA (2013) The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Asp Med 34(2–3):95–107. https://doi.org/10.1016/j.mam.2012.12.009

    Article  CAS  Google Scholar 

  25. Mullins JG (2012) Structural modelling pipelines in next generation sequencing projects. Adv Protein Chem Struct Biol 89:117–167. https://doi.org/10.1016/B978-0-12-394287-6.00005-7

    Article  CAS  Google Scholar 

  26. Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A (2016) Coarse-grained protein models and their applications. Chem Rev 116(14):7898–7936. https://doi.org/10.1021/acs.chemrev.6b00163

    Article  CAS  Google Scholar 

  27. Casadio R, Fariselli P, Martelli PL, Tasco G (2007) Thinking the impossible: how to solve the protein folding problem with and without homologous structures and more. Methods Mol Biol 350:305–320. https://doi.org/10.1385/1-59745-189-4:305

    Article  CAS  Google Scholar 

  28. Venclovas C (2012) Methods for sequence-structure alignment. Methods Mol Biol 857:55–82. https://doi.org/10.1007/978-1-61779-588-6_3

    Article  CAS  Google Scholar 

  29. Stamm M, Staritzbichler R, Khafizov K, Forrest LR (2014) AlignMe–a membrane protein sequence alignment web server. Nucleic Acids Res 42(Web Server issue):W246–W251. https://doi.org/10.1093/nar/gku291

  30. Hill JR, Deane CM (2013) MP-T: improving membrane protein alignment for structure prediction. Bioinformatics 29(1):54–61. https://doi.org/10.1093/bioinformatics/bts640

    Article  CAS  Google Scholar 

  31. Muhammed MT, Aki-Yalcin E (2019) Homology modeling in drug discovery: overview, current applications, and future perspectives. Chem Biol Drug Des 93(1):12–20. https://doi.org/10.1111/cbdd.13388

    Article  CAS  Google Scholar 

  32. Cardozo T, Totrov M, Abagyan R (1995) Homology modeling by the ICM method. Proteins 23(3):403–414. https://doi.org/10.1002/prot.340230314

    Article  CAS  Google Scholar 

  33. Abagyan R, Totrov M, Kuznetsov D (1994) ICM – a new method for protein modeling and design – applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15(5):488–506

    Article  CAS  Google Scholar 

  34. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins Struct Funct Bioinform 55(2):351–367

    Article  CAS  Google Scholar 

  35. Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815

    Article  CAS  Google Scholar 

  36. Gabrielsen M, Ravna AW, Kristiansen K, Sylte I (2012) Substrate binding and translocation of the serotonin transporter studied by docking and molecular dynamics simulations. J Mol Model 18(3):1073–1085. https://doi.org/10.1007/s00894-011-1133-1

    Article  CAS  Google Scholar 

  37. Gabrielsen M, Kurczab R, Siwek A, Wolak M, Ravna AW, Kristiansen K, Kufareva I, Abagyan R, Nowak G, Chilmonczyk Z, Sylte I, Bojarski AJ (2014) Identification of novel serotonin transporter compounds by virtual screening. J Chem Inf Model 54(3):933–943. https://doi.org/10.1021/ci400742s

    Article  CAS  PubMed Central  Google Scholar 

  38. Gabrielsen M, Kurczab R, Ravna AW, Kufareva I, Abagyan R, Chilmonczyk Z, Bojarski AJ, Sylte I (2012) Molecular mechanism of serotonin transporter inhibition elucidated by a new flexible docking protocol. Eur J Med Chem 47(1):24–37. https://doi.org/10.1016/j.ejmech.2011.09.056

    Article  CAS  Google Scholar 

  39. Warszycki D, Rueda M, Mordalski S, Kristiansen K, Satala G, Rataj K, Chilmonczyk Z, Sylte I, Abagyan R, Bojarski AJ (2017) From homology models to a set of predictive binding pockets-a 5-HT1A receptor case study. J Chem Inf Model 57(2):311–321. https://doi.org/10.1021/acs.jcim.6b00263

    Article  CAS  PubMed Central  Google Scholar 

  40. Ravna AW, Sylte I, Sager G (2009) Binding site of ABC transporter homology models confirmed by ABCB1 crystal structure. Theor Biol Med Model 6:20. https://doi.org/10.1186/1742-4682-6-20

    Article  CAS  PubMed Central  Google Scholar 

  41. Ravna AW, Sylte I, Kristiansen K, Dahl SG (2006) Putative drug binding conformations of monoamine transporters. Bioorg Med Chem 14(3):666–675. https://doi.org/10.1016/j.bmc.2005.08.054

    Article  CAS  Google Scholar 

  42. Jaronczyk M, Wolosewicz K, Gabrielsen M, Nowak G, Kufareva I, Mazurek AP, Ravna AW, Abagyan R, Bojarski AJ, Sylte I, Chilmonczyk Z (2012) Synthesis, in vitro binding studies and docking of long-chain arylpiperazine nitroquipazine analogues, as potential serotonin transporter inhibitors. Eur J Med Chem 49:200–210. https://doi.org/10.1016/j.ejmech.2012.01.012

    Article  CAS  PubMed Central  Google Scholar 

  43. Gabrielsen M, Wolosewicz K, Zawadzka A, Kossakowski J, Nowak G, Wolak M, Stachowicz K, Siwek A, Ravna AW, Kufareva I, Kozerski L, Bednarek E, Sitkowski J, Bocian W, Abagyan R, Bojarski AJ, Sylte I, Chilmonczyk Z (2013) Synthesis, antidepressant evaluation and docking studies of long-chain alkylnitroquipazines as serotonin transporter inhibitors. Chem Biol Drug Des 81(6):695–706. https://doi.org/10.1111/cbdd.12116

    Article  CAS  PubMed Central  Google Scholar 

  44. Freyd T, Warszycki D, Mordalski S, Bojarski AJ, Sylte I, Gabrielsen M (2017) Ligand-guided homology modelling of the GABAB2 subunit of the GABAB receptor. PLoS One 12(3):e0173889. https://doi.org/10.1371/journal.pone.0173889

    Article  CAS  PubMed Central  Google Scholar 

  45. Baglo Y, Gabrielsen M, Sylte I, Gederaas OA (2013) Homology modeling of human gamma-butyric acid transporters and the binding of pro-drugs 5-aminolevulinic acid and methyl aminolevulinic acid used in photodynamic therapy. PLoS One 8(6):e65200. https://doi.org/10.1371/journal.pone.0065200

    Article  CAS  PubMed Central  Google Scholar 

  46. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303. https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed Central  Google Scholar 

  47. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  PubMed Central  Google Scholar 

  48. Venko K, Roy Choudhury A, Novic M (2017) Computational approaches for revealing the structure of membrane transporters: case study on bilitranslocase. Comput Struct Biotechnol J 15:232–242. https://doi.org/10.1016/j.csbj.2017.01.008

    Article  CAS  PubMed Central  Google Scholar 

  49. Almeida JG, Preto AJ, Koukos PI, Bonvin A, Moreira IS (2017) Membrane proteins structures: a review on computational modeling tools. Biochim Biophys Acta Biomembr 1859(10):2021–2039. https://doi.org/10.1016/j.bbamem.2017.07.008

    Article  CAS  Google Scholar 

  50. Ebejer JP, Hill JR, Kelm S, Shi J, Deane CM (2013) Memoir: template-based structure prediction for membrane proteins. Nucleic Acids Res 41(Web Server issue):W379–W383. https://doi.org/10.1093/nar/gkt331

  51. Kelm S, Shi J, Deane CM (2010) MEDELLER: homology-based coordinate generation for membrane proteins. Bioinformatics 26(22):2833–2840. https://doi.org/10.1093/bioinformatics/btq554

    Article  CAS  PubMed Central  Google Scholar 

  52. Chen KY, Sun J, Salvo JS, Baker D, Barth P (2014) High-resolution modeling of transmembrane helical protein structures from distant homologues. PLoS Comput Biol 10(5):e1003636. https://doi.org/10.1371/journal.pcbi.1003636

    Article  CAS  PubMed Central  Google Scholar 

  53. Nikolaev DM, Shtyrov AA, Panov MS, Jamal A, Chakchir OB, Kochemirovsky VA, Olivucci M, Ryazantsev MN (2018) A comparative study of modern homology modeling algorithms for rhodopsin structure prediction. Acs Omega 3(7):7555–7566

    Article  CAS  PubMed Central  Google Scholar 

  54. Schlessinger A, Welch MA, van Vlijmen H, Korzekwa K, Swaan PW, Matsson P (2018) Molecular modeling of drug-transporter interactions-an international transporter consortium perspective. Clin Pharmacol Ther 104(5):818–835. https://doi.org/10.1002/cpt.1174

    Article  CAS  Google Scholar 

  55. Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381(6580):272. https://doi.org/10.1038/381272a0

    Article  CAS  Google Scholar 

  56. Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) Procheck – a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  57. Colovos C, Yeates TO (1993) Verification of protein structures – patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519

    Article  CAS  PubMed Central  Google Scholar 

  58. Maiorov V, Abagyan R (1998) Energy strain in three-dimensional protein structures. Fold Des 3(4):259–269

    Article  CAS  Google Scholar 

  59. Schmidt T, Bergner A, Schwede T (2014) Modelling three-dimensional protein structures for applications in drug design. Drug Discov Today 19(7):890–897. https://doi.org/10.1016/j.drudis.2013.10.027

    Article  CAS  Google Scholar 

  60. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540):93–96. https://doi.org/10.1126/science.1065659

    Article  CAS  Google Scholar 

  61. Forrest LR, Tang CL, Honig B (2006) On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys J 91(2):508–517

    Article  CAS  PubMed Central  Google Scholar 

  62. Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211(5052):969–970. https://doi.org/10.1038/211969a0

    Article  CAS  Google Scholar 

  63. Krishnamurthy H, Gouaux E (2012) X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481(7382):469–474. https://doi.org/10.1038/nature10737

    Article  CAS  PubMed Central  Google Scholar 

  64. Shimamura T, Weyand S, Beckstein O, Rutherford NG, Hadden JM, Sharples D, Sansom MS, Iwata S, Henderson PJ, Cameron AD (2010) Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science 328(5977):470–473. https://doi.org/10.1126/science.1186303

    Article  CAS  PubMed Central  Google Scholar 

  65. Perez C, Koshy C, Yildiz O, Ziegler C (2012) Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP. Nature 490(7418):126–130. https://doi.org/10.1038/nature11403

    Article  CAS  Google Scholar 

  66. Khelashvili G, Stanley N, Sahai MA, Medina J, LeVine MV, Shi L, De Fabritiis G, Weinstein H (2015) Spontaneous inward opening of the dopamine transporter is triggered by PIP2-regulated dynamics of the N-terminus. ACS Chem Neurosci 6(11):1825–1837. https://doi.org/10.1021/acschemneuro.5b00179

    Article  CAS  Google Scholar 

  67. Kazmier K, Sharma S, Quick M, Islam SM, Roux B, Weinstein H, Javitch JA, McHaourab HS (2014) Conformational dynamics of ligand-dependent alternating access in LeuT. Nat Struct Mol Biol 21(5):472–479. https://doi.org/10.1038/nsmb.2816

    Article  CAS  PubMed Central  Google Scholar 

  68. Schlessinger A, Geier E, Fan H, Irwin JJ, Shoichet BK, Giacomini KM, Sali A (2011) Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proc Natl Acad Sci U S A 108(38):15810–15815. https://doi.org/10.1073/pnas.1106030108

    Article  PubMed Central  Google Scholar 

  69. Rueda M, Bottegoni G, Abagyan R (2009) Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes. J Chem Inf Model 49(3):716–725. https://doi.org/10.1021/ci8003732

    Article  CAS  PubMed Central  Google Scholar 

  70. Bottegoni G, Kufareva I, Totrov M, Abagyan R (2009) Four-dimensional docking: a fast and accurate account of discrete receptor flexibility in ligand docking. J Med Chem 52(2):397–406. https://doi.org/10.1021/jm8009958

    Article  CAS  PubMed Central  Google Scholar 

  71. Xiang Z (2006) Advances in homology protein structure modeling. Curr Protein Pept Sci 7(3):217–227. https://doi.org/10.2174/138920306777452312

    Article  CAS  PubMed Central  Google Scholar 

  72. Sauder JM, Arthur JW, Dunbrack RL Jr (2000) Large-scale comparison of protein sequence alignment algorithms with structure alignments. Proteins 40(1):6–22. https://doi.org/10.1002/(sici)1097-0134(20000701)40:1<6::aid-prot30>3.0.co;2-7

    Article  CAS  Google Scholar 

  73. Levitt M (1992) Accurate modeling of protein conformation by automatic segment matching. J Mol Biol 226(2):507–533

    Article  CAS  Google Scholar 

  74. Xiang ZX, Soto CS, Honig B (2002) Evaluating conformational free energies: the colony energy and its application to the problem of loop prediction. Proc Natl Acad Sci U S A 99(11):7432–7437

    Article  CAS  PubMed Central  Google Scholar 

  75. Xiang ZX, Honig B (2001) Extending the accuracy limits of prediction for side-chain conformations (vol 311, pg 421, 2001). J Mol Biol 312(2):419–419

    Article  CAS  Google Scholar 

  76. Dorn M, e Silva MB, Buriol LS, Lamb LC (2014) Three-dimensional protein structure prediction: methods and computational strategies. Comput Biol Chem 53PB:251–276. https://doi.org/10.1016/j.compbiolchem.2014.10.001

    Article  CAS  Google Scholar 

  77. Wong SWK, Liu JS, Kou SC (2017) Fast de novo discovery of low-energy protein loop conformations. Proteins 85(8):1402–1412. https://doi.org/10.1002/prot.25300

    Article  CAS  Google Scholar 

  78. Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, Tyka M, Baker D, Karplus K (2009) Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77(Suppl 9):114–122. https://doi.org/10.1002/prot.22570

    Article  CAS  PubMed Central  Google Scholar 

  79. Jamroz M, Kolinski A (2010) Modeling of loops in proteins: a multi-method approach. BMC Struct Biol 10:5. https://doi.org/10.1186/1472-6807-10-5

    Article  CAS  PubMed Central  Google Scholar 

  80. Dalton JA, Jackson RM (2010) Homology-modelling protein-ligand interactions: allowing for ligand-induced conformational change. J Mol Biol 399(4):645–661. https://doi.org/10.1016/j.jmb.2010.04.047

    Article  CAS  Google Scholar 

  81. Fan H, Irwin JJ, Webb BM, Klebe G, Shoichet BK, Sali A (2009) Molecular docking screens using comparative models of proteins. J Chem Inf Model 49(11):2512–2527. https://doi.org/10.1021/ci9003706

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingebrigt Sylte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sylte, I., Gabrielsen, M., Kristiansen, K. (2023). Homology Modeling of Transporter Proteins. In: Filipek, S. (eds) Homology Modeling. Methods in Molecular Biology, vol 2627. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2974-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2974-1_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2973-4

  • Online ISBN: 978-1-0716-2974-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics