Skip to main content

Analysis of Physiological Control of Adult Drosophila Oogenesis by Interorgan Communication

  • Protocol
  • First Online:
Drosophila Oogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2626))

Abstract

Tissue homeostasis is dependent on the interaction between various organs within an organism in response to physiological inputs. The adult Drosophila melanogaster ovary is sensitive to environmental challenges and has recently been shown to be regulated by signaling from peripheral organs. To dissect the intricate coordination between overall organism health and reproduction, it is necessary to meticulously characterize both experimental tools and oogenesis processes. This chapter provides a guide for the careful analysis of interorgan communication in regulating oogenesis in adult Drosophila melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Drummond-Barbosa D, Spradling AC (2001) Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol 231(1):265–278. https://doi.org/10.1006/dbio.2000.0135

    Article  CAS  Google Scholar 

  2. Ishibashi JR, Taslim TH, Ruohola-Baker H (2020) Germline stem cell aging in the Drosophila ovary. Curr Opin Insect Sci 37:57–62. https://doi.org/10.1016/j.cois.2019.11.003

    Article  Google Scholar 

  3. Drummond-Barbosa D (2019) Local and physiological control of germline stem cell lineages in Drosophila melanogaster. Genetics 213(1):9–26. https://doi.org/10.1534/genetics.119.300234

    Article  CAS  Google Scholar 

  4. Armstrong AR, Drummond-Barbosa D (2018) Insulin signaling acts in adult adipocytes via GSK-3beta and independently of FOXO to control Drosophila female germline stem cell numbers. Dev Biol 440(1):31–39. https://doi.org/10.1016/j.ydbio.2018.04.028

    Article  CAS  Google Scholar 

  5. Armstrong AR, Laws KM, Drummond-Barbosa D (2014) Adipocyte amino acid sensing controls adult germline stem cell number via the amino acid response pathway and independently of Target of Rapamycin signaling in Drosophila. Development 141(23):4479–4488. https://doi.org/10.1242/dev.116467

    Article  CAS  Google Scholar 

  6. Matsuoka S, Armstrong AR, Sampson LL, Laws KM, Drummond-Barbosa D (2017) Adipocyte metabolic pathways regulated by diet control the female germline stem cell lineage in Drosophila melanogaster. Genetics 206(2):953–971. https://doi.org/10.1534/genetics.117.201921

    Article  CAS  Google Scholar 

  7. Weaver LN, Drummond-Barbosa D (2018) Maintenance of proper germline stem cell number requires adipocyte collagen in adult Drosophila females. Genetics 209(4):1155–1166. https://doi.org/10.1534/genetics.118.301137

    Article  CAS  Google Scholar 

  8. Weaver LN, Drummond-Barbosa D (2019) The nuclear receptor seven up functions in adipocytes and oenocytes to control distinct steps of Drosophila oogenesis. Dev Biol 456(2):179–189. https://doi.org/10.1016/j.ydbio.2019.08.015

    Article  CAS  Google Scholar 

  9. Sieber MH, Spradling AC (2015) Steroid signaling establishes a female metabolic state and regulates SREBP to control oocyte lipid accumulation. Curr Biol 25(8):993–1004. https://doi.org/10.1016/j.cub.2015.02.019

    Article  CAS  Google Scholar 

  10. Weaver LN, Drummond-Barbosa D (2021) Hormone receptor 4 is required in muscles and distinct ovarian cell types to regulate specific steps of Drosophila oogenesis. Development 148(5). https://doi.org/10.1242/dev.198663

  11. Ables ET, Drummond-Barbosa D (2017) Steroid hormones and the physiological regulation of tissue-resident stem cells: lessons from the Drosophila ovary. Curr Stem Cell Rep 3(1):9–18. https://doi.org/10.1007/s40778-017-0070-z

    Article  Google Scholar 

  12. Greenspan LJ, de Cuevas M, Matunis E (2015) Genetics of gonadal stem cell renewal. Annu Rev Cell Dev Biol 31:291–315. https://doi.org/10.1146/annurev-cellbio-100913-013344

    Article  CAS  Google Scholar 

  13. Hales KG, Korey CA, Larracuente AM, Roberts DM (2015) Genetics on the fly: a primer on the Drosophila model system. Genetics 201(3):815–842. https://doi.org/10.1534/genetics.115.183392

    Article  CAS  Google Scholar 

  14. Laws KM, Drummond-Barbosa D (2017) Control of germline stem cell lineages by diet and physiology. Results Probl Cell Differ 59:67–99. https://doi.org/10.1007/978-3-319-44820-6_3

    Article  CAS  Google Scholar 

  15. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    Article  CAS  Google Scholar 

  16. Pfeiffer BD, Ngo TT, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186(2):735–755. https://doi.org/10.1534/genetics.110.119917

    Article  CAS  Google Scholar 

  17. Douglas HC, Hawthorne DC (1966) Regulation of genes controlling synthesis of the galactose pathway enzymes in yeast. Genetics 54(3):911–916

    Article  CAS  Google Scholar 

  18. McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302(5651):1765–1768. https://doi.org/10.1126/science.1089035

    Article  CAS  Google Scholar 

  19. Weaver LN, Ma T, Drummond-Barbosa D (2020) Analysis of Gal4 expression patterns in adult Drosophila females. G3 (Bethesda) 10(11):4147–4158. https://doi.org/10.1534/g3.120.401676

    Article  CAS  Google Scholar 

  20. Weaver LN, Drummond-Barbosa D (2020) The nuclear receptor seven up regulates genes involved in immunity and xenobiotic response in the adult Drosophila female fat body. G3 (Bethesda) 10(12):4625–4635. https://doi.org/10.1534/g3.120.401745

    Article  CAS  Google Scholar 

  21. McClure CD, Hassan A, Aughey GN, Butt K, Estacio-Gomez A, Duggal A, Ying Sia C, Barber AF, Southall TD (2022) An auxin-inducible, GAL4-compatible, gene expression system for Drosophila. eLife 11. https://doi.org/10.7554/eLife.67598

  22. Nelliot A, Bond N, Hoshizaki DK (2006) Fat-body remodeling in Drosophila melanogaster. Genesis 44(8):396–400. https://doi.org/10.1002/dvg.20229

    Article  CAS  Google Scholar 

  23. Wu JS, Luo L (2006) A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat Protoc 1(4):2110–2115. https://doi.org/10.1038/nprot.2006.336

    Article  CAS  Google Scholar 

  24. Xiao YS, Schock F, Gonzalez-Morales N (2017) Rapid IFM dissection for visualizing fluorescently tagged sarcomeric proteins. Bio Protoc 7(22). https://doi.org/10.21769/BioProtoc.2606

  25. Arain U, Valentino P, Islam IM, Erclik T (2021) Dissection, immunohistochemistry and mounting of larval and adult drosophila brains for optic lobe visualization. J Vis Exp 170. https://doi.org/10.3791/61273

  26. de Cuevas MSA (1998) Morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development 125(15):2781–2789

    Article  Google Scholar 

  27. Gandara ACP, Drummond-Barbosa D (2022) Warm and cold temperatures have distinct germline stem cell lineage effects during Drosophila oogenesis. Development 149(5). https://doi.org/10.1242/dev.200149

  28. Ma T, Matsuoka S, Drummond-Barbosa D (2020) RNAi-based screens uncover a potential new role for the orphan neuropeptide receptor Moody in Drosophila female germline stem cell maintenance. PLoS One 15(12):e0243756. https://doi.org/10.1371/journal.pone.0243756

    Article  CAS  Google Scholar 

  29. Sun J, Spradling AC (2013) Ovulation in Drosophila is controlled by secretory cells of the female reproductive tract. eLife 2:e00415. https://doi.org/10.7554/eLife.00415

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Kaitlin Laws for critical comments on drafts of this manuscript. This work was supported by National Institutes of Health (NIH) grant R00 GM127605.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley N. Weaver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Weaver, L.N. (2023). Analysis of Physiological Control of Adult Drosophila Oogenesis by Interorgan Communication. In: Giedt, M.S., Tootle, T.L. (eds) Drosophila Oogenesis. Methods in Molecular Biology, vol 2626. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2970-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2970-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2969-7

  • Online ISBN: 978-1-0716-2970-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics